Historical sedimentary trends of mercury and other trace elements from two saltmarshes of the Marano and Grado lagoon (northern Adriatic Sea)

Abstract

Purpose

Previous research conducted in the Marano and Grado lagoon (northern Adriatic Sea) has shown that this environment has been affected by trace metal contamination, especially by mercury (Hg), from both industrial (the chlor-alkali plant) and mining activities (Idrija mine, Slovenia). Sediment cores were collected from two different saltmarshes of this lagoon environment to evaluate the degree of the anthropogenic enrichments and the geochronology of Hg accumulation.

Materials and methods

Core subsampling was performed by cutting 1-cm thick slices at discrete intervals. Mercury determination was done differently from the other parameters in that the two long cores were subsampled at 1-cm intervals to obtain continuous concentration profiles. Samples were completely decomposed, using a mixture of mineral acids in a closed microwave system before being analysed for trace metal content using ICP-OES. Total Hg content in the solid phase was determined by DMA-80. 137Cs was measured via gamma spectrometry. 210Pb activity was measured via alpha-counting of its daughter, 210Po, assuming secular equilibrium between the two isotopes.

Results and discussion

In saltmarsh sediments, Fe, Co, Li, Sc and V show no enrichment at both sites thus suggesting that they are essentially lithogenic elements. Conversely, enrichments are minimal (EF = <2) for As, Cd, Cr, Ni, Pb and Zn and moderate (EF = 2–5) for Cu and Mn and also for Pb and Zn but only in some levels of the sedimentary sequences. An exception is Hg, as expected due to the long-term input proceeding from the historical mining activity which has especially affected the eastern sector of the lagoon.

Conclusions

The core collected from the saltmarsh in the eastern lagoon (Grado) displays a better time resolution during the last century although the Hg background level has not been reached. Conversely, the core collected in the western sector (Marano) has recorded a longer and more complete history of Hg contamination, from the beginning of the peak of Hg extraction activity at the Idrija mine (1850). Both saltmarshes still receive Hg inputs and the sediment accumulation rates in the upper section appear to have increased over the last 10–20 years (from 0.30 to 0.45 cm year−1 at Marano and from 0.30 to 0.74 cm year−1 at Grado). Many of these morphological structures suffer erosive processes thus representing a potential source of contaminants associated with sediments, in particular Hg. Conservation and monitoring of saltmarshes should be taken into consideration also from this environmental point of view.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Acquavita A, Emili A, Covelli S, Faganeli J, Predonzani S, Koron N, Carrasco L (2012a) The effects of resuspension on the fate of Hg in contaminated sediments (Marano and Grado Lagoon, Italy): short-term simulation experiments. Estuar Coast Shelf Sci 13:32–40

    Article  Google Scholar 

  2. Acquavita A, Covelli S, Emili A, Berto D, Faganeli J, Giani M, Horvat M, Koron N, Rampazzo F (2012b) Mercury in the sediments of the Marano and Grado Lagoon (northern Adriatic Sea): sources, distribution and speciation. Estuar Coast Shelf Sci 13:20–31

    Article  Google Scholar 

  3. Allen JRL (1993) Muddy alluvial coasts of Britain: field criteria for shoreline position and movement in the recent past. Proc Geol Assoc 104:241–262

    Article  Google Scholar 

  4. Almeida AC, Wagener A d LR, Maia CB, Miekeley N (2004) Speciation of organotin compounds in sediment cores from Guanabara Bay, Rio de Janeiro (Brazil) by gas chromatography–pulsed flame photometric detection. Appl Organomet Chem 18:694–704

    CAS  Article  Google Scholar 

  5. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    CAS  Article  Google Scholar 

  6. Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiol 103:29–35

    CAS  Article  Google Scholar 

  7. Baptista Neto JA, Crapez M, McAllister JJ, Vilela CG (2005) Concentration and bioavailability of heavy in sediments from Niteroi Bay (Guanabara Bay, S.E. Brazil). J Coast Research 21:811–817

    Article  Google Scholar 

  8. Bellucci LG, Frignani M, Cochran JK, Albertazzi S, Zaggia L, Cecconi G, Hopkins H (2007) 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon—links to flooding frequency and climate change. J Environ Radioactivity 97:85–102

    CAS  Article  Google Scholar 

  9. Berner RA (1971) Principles of chemical sedimentology. McGraw & Hill, New York

    Google Scholar 

  10. Brambati A (1969) Sedimentazione recente nelle Lagune di Marano e Grado (Adriatico settentrionale). Studi Trentini Scienze Naturali - Acta Geologica A XLVI:142–239 (in Italian)

    Google Scholar 

  11. Brambati A (1997) Metalli pesanti nelle lagune di Marano e Grado. Piano di studi finalizzato all’accertamento di sostanze persistenti nelle Lagune di Marano e Grado ed al loro risanamento. Regione Autonoma Friuli Venezia Giulia—Direzione Regionale dell’Ambiente. Servizio dell’Idraulica, Trieste, p. 175 (in Italian)

    Google Scholar 

  12. Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    CAS  Article  Google Scholar 

  13. Burdige DJ, Gieskes JM (1983) A porewater/solid phase diagenetic model for manganese in marine sediments. American J Sci 283:29–47

    CAS  Article  Google Scholar 

  14. Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22

    CAS  Article  Google Scholar 

  15. Covelli S, Acquavita A, Piani R, Predonzani S, De Vittor C (2009) Recent and past contamination of mercury in an estuarine environment (Marano lagoon, northern Adriatic, Italy). Est Coast Shelf Sci 82:273–284

    CAS  Article  Google Scholar 

  16. Covelli S, Emili A, Acquavita A, Koron N, Faganeli J (2011) Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Cont Shelf Res 31:1777–1789

    Article  Google Scholar 

  17. Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M (2008) Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, northern Adriatic Sea, Italy). Appl Geochem 23:529–546

    CAS  Article  Google Scholar 

  18. Covelli S, Faganeli J, Horvat M, Brambati A (2001) Mercury contamination of coastal sediments as the result of a long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic Sea). Appl Geochem 16:541–558

    CAS  Article  Google Scholar 

  19. Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30:34–45

    CAS  Article  Google Scholar 

  20. Covelli S, Fontolan G, Faganeli J, Ogrinc N (2006) Antrophogenic markers in the Holocene stratigraphic sequence of the Gulf of Trieste (northern Adriatic Sea). Mar Geol 230:29–51

    Article  Google Scholar 

  21. Covelli S, Langone L, Acquavita A, Piani R, Emili A (2012) Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea). Est Coast Shelf Sci 13:7–19

    Article  Google Scholar 

  22. Covelli S, Piani R, Acquavita A, Predonzani S, Faganeli J (2007) Transport and dispersion of particulate Hg associated with a river plume in coastal northern Adriatic environments. Mar Pollut Bull 55:436–450

    CAS  Article  Google Scholar 

  23. Cukrov N, Frančišković-Bilinski S, Hlača B, Barišić D (2011) A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia. Mar Pollut Bull 62:154–167

    CAS  Article  Google Scholar 

  24. Dias RA, Maurício GN, Bugoni L (2016) Birds of the Patos Lagoon estuary and adjacent coastal waters, southern Brazil: species assemblages and conservation implications. Mar Biol Res. doi:10.1080/17451000.2016.1209525

    Google Scholar 

  25. Duarte B, Caetano M, Almeida PR, Vale C, Caçador I (2010) Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668

    CAS  Article  Google Scholar 

  26. Elphick CS, Meiman S, Rubega MA (2015) Tidal-flow restoration provides little nesting habitat for a globally vulnerable saltmarsh bird. Restor Ecol 23:439–446

    Article  Google Scholar 

  27. Faganeli J, Malej A, Pezdic J, Malacic V (1988) C:N:P ratios and stable C isotopic ratios as indicators of sources of organic matter in the Gulf of Trieste (Northern Adriatic) Oceanol Acta, 11:377-382

  28. Faganeli J, Horvat M, Covelli S, Fajon V, Logar M, Lipej L, Cermelj B (2003) Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Sci Total Environ 304:315–326

    CAS  Article  Google Scholar 

  29. Fichet D, Radenac G, Miramand P (1998) Experimental studies of impacts of harbour sediments resuspension to marine invertebrates larvae: bioavailability of Cd, Cu, Pb and Zn and toxicity. Mar Pollut Bull 36:509–518

    CAS  Article  Google Scholar 

  30. Fontolan G, Bezzi A, Facchin G, Pillon S (2010). Le trasformazioni ambientali della Laguna di Grado e Marano. Rapporto Tecnico 1—ARPA 10, Università degli studi di Trieste, pp 75 (in Italian)

  31. Fontolan G, Pillon S, Bezzi A, Villalta R, Lipizer M, Triches A, D’Aietti A (2012) Human impact and the historical transformation of saltmarshes in the Marano and Grado Lagoon, northern Adriatic Sea. Est Coast Shelf Sci 113:41–56

    Article  Google Scholar 

  32. Frignani M, Bellucci LG, Favotto M, Albertazzi S (2005) Pollution historical trends as recorded by sediments at selected sites of the Venice Lagoon. Environ Int 31:1011–1022

    CAS  Article  Google Scholar 

  33. Frignani M, Langone L, Albertazzi S, Ravaioli M (1993) Cronologia di sedimenti marini. Analisi di 210Pb via 210Po per spettrometria alfa. IGM-CNR Technical Report 28, pp 24 (in Italian)

  34. Frignani M, Langone L, Ravaioli M, Sticchi A (1991) Cronologia di sedimenti marini. Analisi di radionuclidi naturali ed artificiali mediante spettrometria gamma IGM-CNR Technical Report 24(p):32 (in Italian)

    Google Scholar 

  35. Frignani M, Sorgente D, Langone L, Albertazzi S, Ravaioli M (2004) Behavior of Chernobyl radiocesium in sediments of the Adriatic Sea offshore the Po River delta and the Emilia-Romagna coast. J Environ Radioactivity 71:299–312

    CAS  Article  Google Scholar 

  36. Frignani M, Langone L (1991) Accumulation rates and 137Cs distribution in sediments off the Po River delta and the Emilia-Romagna coast (northwestern Adriatic Sea, Italy). Cont Shelf Res 11:525–542

    Article  Google Scholar 

  37. Froelich PN, Klinkhammer GP, Bender ML (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    CAS  Article  Google Scholar 

  38. Gosar M, Žibret G (2011) Mercury contents in the vertical profiles through alluvial sediments as a reflection of mining in Idrija (Slovenia). J Geochem Explor 110:81–91

    CAS  Article  Google Scholar 

  39. Goto D, Wallace WG (2010) Relative importance of multiple environmental variables in structuring benthic macroinfaunal assemblages in chronically metal-polluted salt marshes. Mar Pollut Bull 60:363–375

    CAS  Article  Google Scholar 

  40. Guetté A, Joyeux E, Corre F, Haie S, Godet L (2016) Old and unmowed saltmarsh patches provide attractive habitats for breeding passerines. Wetl Ecol Manag 24:477–493

    Article  Google Scholar 

  41. Heath E, Ogrinc N, Faganeli J, Covelli S (2006) Sedimentary record of polycyclic aromatic hydrocarbons in the Gulf of Trieste (northern Adriatic Sea). Water Air Soil Pollut: Focus 6:605–614

    CAS  Article  Google Scholar 

  42. Hedges JI, Stern JH (1984) Carbon and nitrogen determinations in carbonate-containing solids. Limnol Oceanogr 29:657–663

    CAS  Article  Google Scholar 

  43. Horvat M, Covelli S, Faganeli J, Logar M, Mandic V, Rajar R, Sirca A, Zagar D (1999) Mercury in contaminated coastal environment; a case study: the Gulf of Trieste. Sci Total Environ 237(238):43–56

    Article  Google Scholar 

  44. Hwang H-M, Green PG, Young TM (2009) Historical trends of trace metals in a sediment core from a contaminated tidal salt marsh in San Francisco Bay. Environ Geochem Health 31:421–430

    CAS  Article  Google Scholar 

  45. Li X, Wai OWH, Li YS, Coles BJ, Ramsey MH, Thornton I (2000) Heavy metal distribution in sediment profiles of the Pearl River estuary, South China. Appl Geochem 15:567–581

    CAS  Article  Google Scholar 

  46. Loring DH (1990) Lithium - a new approach for the granulometric normalization of trace metal data. Mar Chem 29:155–168

    CAS  Article  Google Scholar 

  47. Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48:101–115

    Article  Google Scholar 

  48. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev 32:235–283

    CAS  Article  Google Scholar 

  49. Marmolejo-Rodrıguez AJ, Prego R, Meyer-Willerer A, Shumilin E, Cobelo-Garcıa A (2007) Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): influence of an iron mine. Mar Pollut Bull 55:459–468

    Article  Google Scholar 

  50. Marocco R (1995) Sediment distribution and dispersal in northern Adriatic lagoons (Marano and Grado paralic system). Giorn Geol 57:77–89

    Google Scholar 

  51. Mattassi G, Daris F, Nedoclan G, Crevatin E, Modonutti GB, Lach S (1991) La qualità delle acque della Laguna di Marano. USL N°8 "Bassa Friulana", 1–101 (in Italian)

  52. Mlakar L (1974) An outline of production of the Idrija mercury mine through the centuries. Idrijski razgledi 3–4:1–115

    Google Scholar 

  53. Mugnai C, Giuliani S, Bellucci LG, Carraro C, Favotto M, Frignani M (2011) Polychlorinated biphenyls in two salt marsh sediments of the Venice Lagoon. Environ Monitor Assess 181:243–254

    CAS  Article  Google Scholar 

  54. Charts MSC (1975) Macbeth division of Kollmorgen corporation. Baltimore, Maryland

    Google Scholar 

  55. Petranich E, Acquavita A, Covelli S, Emili A (2016) Potential bioaccumulation of trace metals in halophytes from saltmarshes of a northern Adriatic coastal lagoon. J Soils Sediments. doi:10.1007/s11368-016-1545-8

    Google Scholar 

  56. Petrini R, Cidu R, Slejko FF (2016) Thallium contamination in the Raibl mine site stream drainage system (eastern Alps, Italy). Mine Water Environ 35:55–63

    CAS  Article  Google Scholar 

  57. Piani R, Covelli S (2001) Contributo antropico di metalli pesanti e 137Cs nei sedimenti del bacino di Buso (Laguna di Marano e Grado, Italia settentrionale). Studi Trentini di Scienze Naturali - Acta Geologica 77:169–177 (in Italian)

    Google Scholar 

  58. Piani R, Covelli S, Biester H (2005) Mercury contamination in Marano Lagoon (northern Adriatic Sea, Italy): source identification by analyses of Hg phases. Appl Geochem 20:1546–1559

    CAS  Article  Google Scholar 

  59. Quan WM, Han JD, Shen AL, Ping XY, Qian PL, Li CJ, Shi LY, Chen YQ (2007) Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res 64:21–37

    CAS  Article  Google Scholar 

  60. Ramieri E, Barbanti A, Picone M, Menchini G, Bressan E, Dal Forno E (2011) Integrated plan for the sustainable management of the lagoon of Marano and Grado. Littoral 2010:05008

    Google Scholar 

  61. Reis PA, Antunes JC, Almeida CMR (2009) Metal levels in sediments from the Minho estuary salt marsh: a metal clean area? Environ Monitor Assess 159:191–205

    CAS  Article  Google Scholar 

  62. Rice DL (1986) Early diagenesis in bioreactive sediments: relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. J Mar Res 44:149–184

    Article  Google Scholar 

  63. Ridgway J, Shimmield G (2002) Estuaries as repositories of historical contamination and their impact on shelf seas. Est Coast Shelf Sci 55:903–928

    CAS  Article  Google Scholar 

  64. Robbins JA (1978) Geochemical and geophysical application of radioactive lead. In: Nriagu JO (ed) The biogeochemistry of lead in the environment. Elsevier, Amsterdam

    Google Scholar 

  65. Rubio R, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements of sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    CAS  Article  Google Scholar 

  66. Ruiz-Fernandez AC, Sprovieri M, Piazza R, Frignani M, Sanchez-Cabeza J-A, Feo ML, Bellucci LG, Vecchiato M, Perez-Bernal LH, Paez-Osuna F (2012) 210Pb-derived history of PAH and PCB accumulation in sediments of a tropical inner lagoon (Las Matas, Gulf of Mexico) near a major oil refinery. Geochim Cosmochim Acta 82:136–153

    CAS  Article  Google Scholar 

  67. Rule JP (1986) Assessment of trace element geochemistry of Hampton roads harbor and lower Chesapeake Bay area sediment. Environ Geol Water Sci 8:209–221

    CAS  Article  Google Scholar 

  68. Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158

    Article  Google Scholar 

  69. Sinex SA, Wright DA (1988) Distribution of trace metals in the sediments and biota of Cheseapeake Bay. Mar Pollut Bull 19:425–431

    CAS  Article  Google Scholar 

  70. Smith JN, Lee K, Gobeil C, Macdonald RW (2009) Natural rates of sediment containment of PAH, PCB and metal inventories in Sydney harbour, Nova Scotia. Sci Total Environ 407:4858–4869

    CAS  Article  Google Scholar 

  71. Soto-Jiménez MF, Paez-Osuna F (2001) Distribution and normalization of heavy metal concentrations in mangrove and Lagoonal sediments from Mazatlán Harbor (SE gulf of California). Est Coast Shelf Sci 53:259–274

    Article  Google Scholar 

  72. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    CAS  Article  Google Scholar 

  73. Viso Y (2004) Meccanismi di trasporto e dispersione del mercurio di provenienza isontina nel Golfo di Trieste. Università degli Studi di Trieste, Facoltà di Scienze Matematiche, Fisiche e Naturali, Dipartimento di Scienze Geologiche Ambientali e Marine, unpublished Thesis, 139 pp (in Italian)

Download references

Acknowledgements

This work was primarily supported by the University of Trieste (Finanziamento di Ateneo per progetti di ricerca scientifica—FRA 2009, ref. Stefano Covelli) and was partially carried out in the framework of the “RITMARE—la Ricerca ITaliana per il MARE (2012–2016)” Flagship Project, financed by the Italian Ministry of University and Research (MIUR). The authors are especially grateful to Roberto Cattelan of Veritas Laboratories for ICP-OES analyses. Thanks are due to Mauro Bussi and Cristiano Landucci from DMG Trieste for their assistance in grain-size and CHN analyses. A special thanks are due to Jadran Faganeli and an anonymous reviewer for their constructive comments to the early version of the manuscript. Karry Close is warmly acknowledged for proof reading. This is contribution number 1910 of the CNR-ISMAR of Bologna.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Covelli.

Additional information

Responsible editor: Nives Ogrinc

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Covelli, S., Petranich, E., Langone, L. et al. Historical sedimentary trends of mercury and other trace elements from two saltmarshes of the Marano and Grado lagoon (northern Adriatic Sea). J Soils Sediments 17, 1972–1985 (2017). https://doi.org/10.1007/s11368-016-1618-8

Download citation

Keywords

  • Geochronology
  • Mercury
  • Saltmarshes
  • Sediments
  • Trace metals