Journal of Soils and Sediments

, Volume 18, Issue 4, pp 1292–1302 | Cite as

Laser-based spectroscopic methods to evaluate the humification degree of soil organic matter in whole soils: a review

  • Giorgio S. Senesi
  • Ladislau Martin-Neto
  • Paulino Ribeiro Villas-Boas
  • Gustavo Nicolodelli
  • Débora M. B. P. Milori
Natural Organic Matter: Chemistry, Function and Fate in the Environment



The objective of this review is to survey critically the results obtained by the application of laser-induced fluorescence spectroscopy (LIFS) and laser-induced breakdown spectroscopy (LIBS) to the evaluation of the humification degree (HD) of soil organic matter (SOM) directly in untreated, intact whole soils.

Materials and methods

A large number of soils of various origin and nature, either native or under various cultivations, land use, and management, at various depths, have been studied to evaluate the HD of their SOM directly in intact whole samples. The LIFS spectra were obtained by either a bench or a portable argon laser apparatus that emits UV-VIS light of high power, whereas the LIBS spectra were obtained using a Q-switched Nd:YAG laser at 1064 nm.

Results and discussion

The close correlations found by comparing HLIF values of whole soil samples with values of earlier proposed humification indexes confirmed the applicability of LIFS to assess the HD of SOM in whole soils. The high correlation found between HDLIBS values and HLIF values showed the promising potential of LIBS for the evaluation HD of SOM.


The LIFS technique shows to be a valuable alternative to evaluate the HD of SOM by probing directly the whole solid soil sample, thus avoiding the use of any previous chemical and/or physical treatments or separation procedures of SOM from the mineral soil matrix. The emerging application of LIBS to evaluate the HD of SOM in whole soils appears promising and appealing due to its sensitivity, selectivity, accuracy, and precision.


Humification degree Laser-induced breakdown spectroscopy Laser-induced fluorescence spectroscopy Soil organic matter 


  1. Aha D, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6:37–66Google Scholar
  2. Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios. Soil Sci Soc Am J 41:352–358CrossRefGoogle Scholar
  3. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley & Sons Ltd., ChichesterCrossRefGoogle Scholar
  4. Dieckow J, Bayer C, Conceicao PC, Zanatta JA, Martin-Neto L, Milori DMBP, Salton JC, Macedo MM, Mielniczuk J, Hernani LC (2009) Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. Eur J Soil Sci 60:240–249CrossRefGoogle Scholar
  5. Dos Santos CH, Romano RA, Nicolodelli G, Carvalho CM, Villas-Boas PR, Martin-Neto L, Montes CR, Melfi AJ, Milori DMBP (2015) Performance evaluation of a portable laser-induced fluorescence spectroscopy system for the assessment of the humification degree of the soil organic matter. J Braz Chem Soc 26:775–783Google Scholar
  6. Favoretto CM, Goncalves D, Milori DMBP, Rosa JA, Leite WC, Brinatti AM, Saab SC (2008) Determinacao da humificacao da materia organica de um latossolo e de suas fracoes organo-minerais. Quim Nov. 31:1994–1996Google Scholar
  7. Ferreira EC, Ferreira EJ, Villas-Boas PR, Senesi GS, Carvalho CM, Romano RA, Martin-Neto L, Milori DMBP (2014) Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy. Spectrochim Acta B 99:76–81CrossRefGoogle Scholar
  8. Flaig W, Beutelspacher H, Rietz E (1975) Chemical composition and physical properties of humic substances. In: Gieseking JE (ed) Soil components: organic components. Springer-Verlag, New York, pp. 4–95Google Scholar
  9. Geipel G (2006) Laser-induced fluorescence spectroscopy. In: Vij DR (ed) Handbook of applied solid state spectroscopy. Springer, New York, pp. 577–591CrossRefGoogle Scholar
  10. Gonzalez-Perez M, Milori DMBP, Colnago LA, Martin-Neto L, Melo WJ (2007) A laser-induced fluorescence spectroscopic study of organic matter in a Brazilian Oxisol under different tillage systems. Geoderma 138:20–24CrossRefGoogle Scholar
  11. Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS). Part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419CrossRefGoogle Scholar
  12. Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances—a reflection of land use in a fen area. Biogeochemistry 47:219–238Google Scholar
  13. Kononova MM (1966) Soil organic matter. Its nature, its role in soil formation and in soil fertility. Pergamon, OxfordGoogle Scholar
  14. Krasovitskii BM, Bolotin BM (1988) Organic luminescent materials. VCH, WeinheimGoogle Scholar
  15. Lakowics JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  16. Martin-Neto L, Milori DMBP, Da Silva WTL, Simões ML (2009) EPR, FTIR, Raman, UV–Visible absorption, and fluorescence spectroscopies in studies of NOM. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp. 646–711Google Scholar
  17. Martins T, Saab SC, Milori DMBP, Brinatti AM, Rosa JA, Cassaro FAM, Pires LF (2011) Soil organic matter humification under different tillage managements evaluated by laser induced fluorescence (LIF) and C/N ratio. Soil Till Res 111:231–235CrossRefGoogle Scholar
  18. Milori DMBP, Bayer C, Bagnato VS, Mielniczuk J, Martin-Neto L (2002) Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Sci 167:739–749CrossRefGoogle Scholar
  19. Milori DMBP, Galeti HVA, Martin-Neto L, Dieckow J, Gonzalez-Perez M, Bayer C, Salton J (2006) Organic matter study of whole soil samples using laser-induced fluorescence spectroscopy. Soil Sci Soc Am J 70:57–63CrossRefGoogle Scholar
  20. Miziolek AW, Palleschi V, Schechter I (2006) Laser induced breakdown spectroscopy - fundamentals and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Nicolodelli G, Marangoni BS, Cabral JS, Villas-Boas PR, Senesi GS, Dos Santos CH, Romano RA, Segnini A, Lucas Y, Montes CR, Milori DMBP (2014) Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines. Appl Opt 53:2170–2176CrossRefGoogle Scholar
  22. Rice JA (2001) Humin. Soil Sci 166:848–857CrossRefGoogle Scholar
  23. Schnitzer M (1978) Humic substances: chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil organic matter. Elsevier, Amsterdam, pp. 1–64Google Scholar
  24. Schnitzer M, Khan SU (1972) Humic substances in the environment. Marcel Dekker, New YorkGoogle Scholar
  25. Segnini A, Posadas A, Quiroz R, Milori DMBP, Saab SC, Martin-Neto L, Vaz CMP (2010a) Spectroscopic assessment of soil organic matter in wetlands from high Andes. Soil Sci Soc Am J 74:2246–2253CrossRefGoogle Scholar
  26. Segnini A, Posadas A, Quiroz R, Claessens L, Gavilan C, Milori DMBP, Martin-Neto L (2010b) Carbon stocks and spectroscopic assesment of carbon stability in Kenyan soils. ASA-CSSA-SSSA International Annual Meetings Oct. 31 – Nov. 3, 2010. Long beach, CA, USAGoogle Scholar
  27. Segnini A, Posadas A, Quiroz R, Milori DMBP, Vaz CMP, Martin-Neto L (2011) Soil carbon stocks and stability across an altitudinal gradient in southern Peru. J Soil Water Conserv 66:213–220CrossRefGoogle Scholar
  28. Senesi N, Loffredo E (1999) The chemistry of soil organic matter. In: Sparks DL (ed) Soil physical chemistry. CRC Press, Boca Raton, pp. 239–270Google Scholar
  29. Senesi N, Miano TM, Provenzano MR, Brunetti G (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci 152:259–271CrossRefGoogle Scholar
  30. Stevenson FJ (1982) Humus chemistry: genesis, composition and reaction. John Wiley & Sons, New YorkGoogle Scholar
  31. Stevenson FJ (1994) Humus chemistry: genesis, composition and reaction, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  32. Tadini AM, Nicolodelli G, Mounier S, Montes CR, Milori DMBP (2015) The importance of humin in soil characterisation: a study on Amazonian soils using different fluorescence techniques. Sci Total Environ 537:152–158CrossRefGoogle Scholar
  33. Thomazini A, Mendonca ES, Teixeira DB, Almeida ICC, La Scala JN, Canellas LP, Spokas KA, Milori DMBP, Turbay CVG, Fernandes RBA, Schaefer CEGR (2015) CO2 and N2O emissions in a soil chronosequence at a glacier retreat zone in maritime Antarctica. Sci Total Environ 521-522:336–345CrossRefGoogle Scholar
  34. Tivet F, Sa JCM, Lal R, Milori DMBP, Briedis C, Letourmy P, Pinheiro LA, Borszowskei PR, Hartman DC (2013) Assessing humification and organic C compounds by laser-induced fluorescence and FTIR spectroscopies under conventional and no-till management in Brazilian Oxisols. Geoderma 207-208:71–81CrossRefGoogle Scholar
  35. Von Lutzow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445CrossRefGoogle Scholar
  36. Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giorgio S. Senesi
    • 1
  • Ladislau Martin-Neto
    • 2
  • Paulino Ribeiro Villas-Boas
    • 2
  • Gustavo Nicolodelli
    • 2
  • Débora M. B. P. Milori
    • 2
  1. 1.CNRIstituto di Nanotecnologia (NANOTEC), PLASMI LabBariItaly
  2. 2.Embrapa InstrumentationSão CarlosBrazil

Personalised recommendations