Skip to main content
Log in

Metal accumulation and hydraulic performance of bioretention systems after long-term operation

  • SUITMA 8: Soils and Sediments in Urban and Mining Areas
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Stormwater bioretention systems are widely used to treat diffuse infiltration of runoff from paved surfaces and roofs. Substantial questions remain about the hydraulic performance and the accumulation of pollutants in systems over the long term. Data of metal accumulation of systems with operational times >10 years currently is limited. This study deals with the accumulation of metals in a variety of long-term operational bioretention systems (11–22 years) to derive further operation recommendations for the water authorities.

Materials and methods

The hydraulic conductivity of the bioretention systems in field was measured using a double ring infiltrometer. Media soil samples from 22 diverse designed systems were collected across the surface and at intervals up to a depth of 65 cm to determine the spatial accumulation of Zn, Cu, Pb and Cd. Leaching experiments of selected bioretention media soils were derived to assess the metal leachability by water.

Results and discussion

The hydraulic performance of most bioretention systems still met the technical guidelines of Germany even after long-term operation. Considerable metal accumulation occurred in the topsoil (0–20 cm). Median concentrations of all metals are highest at the soil surface (0–10 cm), decreasing with increasing depth. High concentrations were determined at the inflow points of the runoff waters, whereas concentrations at more than 1.5 m distance from the inflow were only slightly increased compared to the initial soil concentrations. Leachability tests have shown that most of the metals deposited in bioretention soils are only slightly water soluble. No concentrations exceeding the threshold values of the German Soil Contamination Ordinance for the pathway soil to groundwater could be determined.

Conclusions

The hydraulic conductivity of the bioretention systems is given even well after long-term operation. Most of the metal accumulation is concentrated in the top 20 cm; concentrations decrease rapidly and mostly reach background/initial concentrations after depths of 30 cm. The water-soluble metals are all below the trigger values of the German Soil Act. This underlines the strong retention capacity of long-term bioretention systems after long-term operational times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achleitner S, Engelhard C, Stegner U, Rauch W (2007) Local infiltration devices at parking sites-experimental assessment of temporal changes in hydraulic and contaminant removal capacity. Water Sci Technol 55(4):193–200

    Article  CAS  Google Scholar 

  • Alloway BJ (2006) Heavy metals in soils. Environmental pollution. Springer, Dordrecht

  • Alvarenga P, Palma P, De Varennes A, Cunha-Queda AC (2012) A contribution towards the risk assessment of soils from the São Domingos mine (Portugal): chemical, microbial and ecotoxicological indicators. Environ Pollut 161:50–56

    Article  CAS  Google Scholar 

  • Bäckström M, Karlsson S, Backman L, Folkeson L, Lind B (2004) Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res 38:720–332

    Article  Google Scholar 

  • BBodSchV (1999) Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999 (BGBl. I S. 1554)

  • Blanchard M, Teil MJ, Ollivon D, Garban B, Chesterikoff C, Chevreuil M (2001) Origin and distribution of polyaromatic hydrocarbons and polychlorobiphenyls in urban effluents to wastewater treatment plants of the Paris area (France). Water Res 35:3679–3687

    Article  CAS  Google Scholar 

  • Blecken GT, Marsalek J, Viklander M (2011) Laboratory study of stormwater biofiltration in low temperatures: total and dissolved metal removals and fates. Water Air Soil Pollut 219(1–4):303–317

    Article  CAS  Google Scholar 

  • Boivin P, Saade M, Pfeiffer HR, Hammecker C, Degoumois Y (2008) Depuration of highway runoff water into grass-covered embankments. Environ Technol 29:709–720

    Article  CAS  Google Scholar 

  • Davis AP, Shokouhian M, Sharma H, Minami C (2001) Laboratory study of biological retention for urban stormwater management. Water Environ Res 73(1):5–14

    Article  CAS  Google Scholar 

  • Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D (2003) Water quality improvement through bioretention: lead, copper, and zinc removal. Water Environ Res 75(1):73–82

    Article  CAS  Google Scholar 

  • Davis AP, Shokouhian M, Sharma H, Minami C (2006) Water quality improvement through bioretention media: nitrogen and phosphorus removal. Water Environ Res 78(3):284–293

    Article  CAS  Google Scholar 

  • Delay M, Lager T, Schulz HD, Frimmel FH (2007) Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag 27(2):248–255

    Article  CAS  Google Scholar 

  • Dierkes C, Geiger WF (1999) Pollution retention capabilities of roadside soils. Water Sci Technol 39:201–208

    CAS  Google Scholar 

  • Dietz ME (2007) Low impact development practices: a review of current research and recommendations for future directions. Water Air Soil Pollut 186(1–4):351–363

    Article  CAS  Google Scholar 

  • Dietz ME, Clausen JC (2006) Saturation to improve pollutant retention in a rain garden. Environ Sci Technol 40(4):1335–1340

    Article  CAS  Google Scholar 

  • DIN 19682-7 (2015) Soil quality—field tests—part 7: determination of infiltration rate by double ring infiltrometer. German Institute for Standardization, Berlin

  • DIN 38414-4 (1984) German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of leachability by water (S4). German Institute for Standardization, Berlin

  • DWA-A 138 - German Association for Water, Wastewater and Waste (2005) Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser, 2005 [Design, construction and operation of rainwater drainage systems] (in German)

  • Fletcher TD, Andrieu H, Hamel P (2013) Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Adv Water Resour 51:261–279

    Article  Google Scholar 

  • Folkeson L, Bækken T, Brenčič M, Dawson A, Frančois D, Kuřímská P, et al. (2009) Sources and fate of water contaminants in roads. In Water in Road Structures. Springer, Netherlands, pp 107–146

  • García P, Pérez ME, Guerra A (2014) Using TM images to detect soil sealing change in Madrid (Spain). Geoderma 214:135–140

    Article  Google Scholar 

  • Göbel P, Dierkes C, Coldewey WG (2007) Storm water runoff concentration matrix for urban areas. J Cont Hydrol 91(1):26–42

    Article  Google Scholar 

  • Hatt BE, Fletcher TD, Deletic A (2008) Hydraulic and pollutant removal performance of fine media stormwater filtration systems. Environ Sci Technol 42(7):2535–2541

    Article  CAS  Google Scholar 

  • He W, Wallinder IO, Leygraf C (2001) A comparison between corrosion rates and runoff rates from new and aged copper and zinc as roofing material. Water Air Soil Pollut Focus 1(3–4):67–82

    Article  CAS  Google Scholar 

  • Hiller D, Winzig G, Dornauf C (2001) Bodenchemische Untersuchungen von Versickerungsanlagen als Grundlage für eine nachhaltige Niederschlagswaserbewirtschaftung im Sinne des Boden- und Grundwasserschutzes. Technical report, Essen (in German)

  • Hunt WF, Jarrett AR, Smith JT, Sharkey LJ (2006) Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J Irrg Drain E Asce 132(6):600–608

    Article  Google Scholar 

  • Ingvertsen ST, Cederkvist K, Régent Y, Sommer H, Magid J, Jensen MB (2012a) Assessment of existing roadside swales with engineered filter soil: I. Characterization and lifetime expectancy. J Environ Qual 41(6):1960–1969

    Article  CAS  Google Scholar 

  • Ingvertsen ST, Cederkvist K, Jensen MB, Magid J (2012b) Assessment of existing roadside swales with engineered filter soil: II. Treatment efficiency and in situ mobilization in soil columns. J Environ Qual 41(6):1970–1981

    Article  CAS  Google Scholar 

  • ISO 11466 (1997) Soil quality—extraction of trace elements soluble in aqua regia. German Institute for Standardization, Berlin

  • ISO 11885 (2007) Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). German Institute for Standardization, Berlin

  • Jones PS, Davis AP (2013) Spatial accumulation and strength of affiliation of heavy metals in bioretention media. J Environ Eng 139(4):479–487

    Article  CAS  Google Scholar 

  • Kabir MI, Daly E, Maggi F (2014) A review of ion and metal pollutants in urban green water infrastructures. Sci Total Environ 470:695–706

    Article  Google Scholar 

  • Kayhanian M, Fruchtman BD, Gulliver JS, Montanaro C, Ranieri E, Wuertz S (2012) Review of highway runoff characteristics: comparative analysis and universal implications. Water Res 46:6609–6624

    Article  CAS  Google Scholar 

  • Kluge B, Werkenthin M, Wessolek G (2014) Metal leaching in a highway embankment on field and laboratory scale. Sci Total Environ 493:495–504

    Article  CAS  Google Scholar 

  • Kocher B, Wessolek G, Stoffregen H (2005) Water and heavy metal transport in roadside soils. Pedosphere 15:746–753

    CAS  Google Scholar 

  • LAGA-Bund/Länder-Arbeitsgemeinschaft Abfall (2003) Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen. Technical regulations. (in German)

  • Le Coustumer S, Fletcher TD, Deletic A, Barraud S, Lewis JF (2009) Hydraulic performance of biofilter systems for stormwater management: influences of design and operation. J Hydrol 376(1):16–23

    Article  Google Scholar 

  • Le Coustumer S, Fletcher TD, Deletic A, Barraud S, Poelsma P (2012) The influence of design parameters on clogging of stormwater biofilters: a large-scale column study. Water Res 46(20):6743–6752

    Article  CAS  Google Scholar 

  • LeFevre GH, Paus KH, Natarajan P, Gulliver JS, Novak PJ, Hozalski RM (2014) Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells. J Environ Eng 141(1):04014050

    Article  Google Scholar 

  • Li H, Davis A (2008a) Urban particle capture in bioretention media. I: laboratory and field studies. J Environ Eng 134(6):409–418

    Article  CAS  Google Scholar 

  • Li H, Davis AP (2008b) Heavy metal capture and accumulation in bioretention media. Environ Sci Technol 42(14):5247–5253

    Article  CAS  Google Scholar 

  • Li H, Davis AP (2009) Water quality improvement through reductions of pollutant loads using bioretention. J Environ Eng 135(8):567–576

    Article  CAS  Google Scholar 

  • Li YL, Deletic A, McCarthy DT (2014) Removal of E. coli from urban stormwater using antimicrobial-modified filter media. J Hazard Mater 271:73–81

    Article  CAS  Google Scholar 

  • Lim HS, Lim W, Hu JY, Ziegler A, Ong SL (2015) Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J Environ Manag 147:24–33

    Article  CAS  Google Scholar 

  • Lindsey G, Roberts L, Page W (1992) Inspection and maintenance of infiltration facilities. J Soil and Water Cons 47(6):481–486

    Google Scholar 

  • Liu J, Sample DJ, Bell C, Guan Y (2014) Review and research needs of bioretention used for the treatment of urban stormwater. Water 6(4):1069–1099

    Article  Google Scholar 

  • Lucke T, Nichols PW (2015) The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Sci Total Environ 536:784–792

    Article  CAS  Google Scholar 

  • Lundy L, Ellis JB, Revitt DM (2012) Risk prioritisation of stormwater pollutant sources. Water Res 46(20):6589–6600

    Article  CAS  Google Scholar 

  • Marsalek J, Watt WE, Anderson BC (2006) Trace metal levels in sediments deposited in urban stormwater management facilities. Water Sci Technol 3(2):175–183

    Article  Google Scholar 

  • Mullane JM, Flury M, Iqbal H, Freeze PM, Hinman C, Cogger CG, Shi Z (2015) Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems. Sci Total Environ 537:294–303

    Article  CAS  Google Scholar 

  • Parker JK, McIntyre D, Noble RT (2010) Characterizing fecal contamination in stormwater runoff in coastal North Carolina, USA. Water Res 44(14):4186–4194

    Article  CAS  Google Scholar 

  • Paus KH, Morgan J, Gulliver JS, Leiknes T, Hozalski RM (2014) Assessment of the hydraulic and toxic removal capacities of bioretention cells after 2 to 8 years of service. Water Air Soil Pollut 225:1803

    Article  Google Scholar 

  • Piguet P, Parriaux A, Bensimon M (2008) The diffuse infiltration of road runoff: an environmental improvement. Sci Total Environ 397:13–23

    Article  CAS  Google Scholar 

  • Preciado HF, Li LY (2006) Evaluation of metal loadings and bioavailability in air, water and soil along two highways of British Columbia, Canada. Water Air Soil Pollut 172:81–108

    Article  CAS  Google Scholar 

  • Prince George’s County PGC (2007) Bioretention manual, PGC, Maryland, Dept. of Environmental Resources, Environmental Services Div., Landover, Md

  • Roy-Poirier A, Champagne P, Filion Y (2010) Review of bioretention system research and design: past, present, and future. J Environ Eng 136(9):878–889

    Article  CAS  Google Scholar 

  • Sauvé S, Hendershot H, Allen HE (2000) Solid-solution partitioning of metals in contaminated soil: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  Google Scholar 

  • Schöttler U, Remmler F (1999) Abschlußbericht zum BMBF-Vohaben Naturnahe Regenwasserbewirtschaftung aus der Sicht des Boden- und Grundwasserschutzes. Technical report. Institut für Wasserforschung GmbH, Dortmund. (in German)

  • Søberg L, Blecken GT, Viklander M (2014) The in fluence of temperature and salt on metal and sediment removal in stormwater biofilters. Water Sci Technol 69(11):2295–2223

    Article  Google Scholar 

  • Trowsdale SA, Simcock R (2011) Urban stormwater treatment using bioretention. J Hydrol 397(3):167–174

    Article  CAS  Google Scholar 

  • Werkenthin M, Kluge B, Wessolek G (2014) Metals in European roadside soils and soil solution—a review. Environ Pollut 189:98–110

    Article  CAS  Google Scholar 

  • Zhang K, Randelovic A, Page D, McCarthy DT, Deletic A (2014) The validation of stormwater biofilters for micropollutant removal using in situ challenge tests. Ecol Eng 67:1–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Ministry of North Rhine-Westfalia (MKUNLV NRW) for financial support. We also would like to thank the Berliner Wasserbetriebe (BWB) for supporting the sampling campaign, as well as Wolfgang Burghardt (University of Essen, Germany) for data contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Kluge.

Additional information

Responsible editor: Jianming Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kluge, B., Markert, A., Facklam, M. et al. Metal accumulation and hydraulic performance of bioretention systems after long-term operation. J Soils Sediments 18, 431–441 (2018). https://doi.org/10.1007/s11368-016-1533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1533-z

Keywords

Navigation