Skip to main content

Advertisement

Log in

Structure-function relationship of vermicompost humic fractions for use in agriculture

  • Natural Organic Matter: Chemistry, Function and Fate in the Environment
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The use of humic substances (HS) in agriculture is beneficial and has positive environmental impacts. However, to optimize the use of HS possible links between their structural characteristics and bioactivity must be shown. The goal of this study is to evaluate the bioactivity of different humic fractions extracted from vermicompost (VC) in rice plants and to shed light to possible structure-function relationships.

Materials and methods

Humic-like fractions were obtained from cattle manure vermicompost processed by African nightcrawlers (Eudrilus eugeniae spp.). Humic-like acid fraction using only water as extractor (HLAw), HLA fraction extracted following the International Humic Substances Society (IHSS) recommended method, and the solid residue (humified residual (HR)) after extraction of HLA were characterized using complementary chemical, physic, and spectroscopic technics (elemental composition, UV-Vis and Fourier transform infrared spectroscopy (FTIR) spectroscopies, 13C-CP MAS NMR, and MEV). Biological activity of the three HS was conducted in growth chambers and measured in roots using WinRhizo Arabidopsis software. Principal component analysis (PCA) was used to find a grouping pattern between the structural variables evaluated and the obtained root parameters.

Results and discussion

Differences were found in elemental composition among HS with larger C/N ratio in HR than in HLA and HLAw. HLA and HLAw FTIR spectra showed carboxyl band at 1714.66 cm−1 better resolved than in HR. Bands at 1642 cm−1 (amide I) and 1510 cm−1 (lignin), were better resolved in HLA. 13C-NMR showed the following order of aromaticity: HLA > HLAw > HR. For HLAw bioactivity, the structures CAlkyl-H,R, CC=O, and CCOO-H,R correlated with the number and growth of smaller root. The aromatic CAr-H,R, CAr-O,N, and aliphatic CAlkyl-O,N, CAlkyl-O, and CAlkyl-di-O structures in HLA, correlated with larger roots growth. HR also stimulated root growth and development in rice plants.

Conclusions

Aliphatic and oxygenated structures in HLAw showed a relation with induction of initial root emissions, whereas the presence of aromatic compounds in HLA was related with root growth stimulation activity. Higher concentration of HLAw was necessary to produce an equivalent stimulus compared with HLA; it could indicate that, although both fractions showed similar types of structures in their composition, differences in the predominant structures may be determining different effects on the root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez MR, Aragonés CR, Padiz AS, Vazquez MM (1998) Lombrices de Tierra con Valor Comercial. Biología y Técnicas de Cultivo [Commercial value of earthworms. Biology and cultivation techniques]. UQROO, Mexico, p 30

  • Aguiar NO, Novotny EH, Oliveira AL, Rumjanek VM, Olivares FL, Canellas LP (2013) Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. J Geochem Explor 129:95–102

    Article  CAS  Google Scholar 

  • Amir S, Jouraiphy A, Meddich A, Gharous M, Winterto P, Hafidi M (2010) Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater 177:524–529

    Article  CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Bierman P, Welch C, Metzger JD (2004) Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour Technol 932:145–153

    Article  Google Scholar 

  • Arancon NQ, Edwards CA, Lee S, Byrne R (2006) Effects of humic acids from vermicomposts on plant growth. Eur J Soil Biol 42:S65–S69

    Article  CAS  Google Scholar 

  • Atiyeh RM, Subler S, Edwards CA, Bachman G, Metzger JD, Shuster (2000) Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44:579–590

    Article  Google Scholar 

  • Atiyeh RM, Edwards CA, Subler S, Metzger JD (2001) Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour Technol 78:11–20

    Article  CAS  Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    Article  CAS  Google Scholar 

  • Baigorri R, Fuentes M, González-Gaitano G, García-Mina JM, Almendros G, González-Vila FJ (2009) Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid. J Agri Food Chem 57:3266–3272

    Article  CAS  Google Scholar 

  • Balmori-Martinez D, Spaccini R, Aguiar NO, Novotny EH, Olivares FL, Canellas L (2014) Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity. J Agr Food Chem 62:11412–11419

    Article  Google Scholar 

  • Berbara RL, García AC (2014) In: Parvaiz A, Mohd RW (eds) Humic substances and plant defense metabolism. Springer, New York, pp. 297–319

    Google Scholar 

  • Campitelli P, Ceppi S (2008) Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma 144:325–333

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric 1:1–11

    Article  Google Scholar 

  • Canellas LP, Dobbss LB, Oliveira AL, Chagas JG, Aguiar NO, Rumjanek VM, Novotny EH, Olivares FL, Spaccini R, Piccolo A (2012) Chemical properties of humic matter as related to induction of plant lateral roots. Eur J Soil Sci 63:315–324

    Article  CAS  Google Scholar 

  • Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RC, Façanha AR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366:119–132

    Article  CAS  Google Scholar 

  • Chai X, Takayuki S, Cao X, Guo Q, Zhao Y (2007) Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere 69:1446–1453

    Article  CAS  Google Scholar 

  • De la Rosa JM, González-Pérez JA, González-Vila FJ, Knicker H, Araújo MF (2011) Molecular composition of sedimentary humic acids from South West Iberian Peninsula: a multi-proxy approach. Org Geochem 42:791–802

    Article  CAS  Google Scholar 

  • Doan TT, Ngo PT, Rumpel C, Van Nguyen B, Jouquet P (2013) Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic-Amsterdam 160:148–154

    Article  Google Scholar 

  • Droussi Z, D’Orazio V, Hafidi M, Ouatmane A (2009) Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products. J Hazard Mater 163:1289–1297

    Article  CAS  Google Scholar 

  • García AC, Santos LA, Izquierdo FG, Sperandio MVL, Castro RN, Berbara RLL (2012) Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecol Eng 47:203–208

    Article  Google Scholar 

  • García AC, Izquierdo FG, Sobrino NMBA, Castro RN, Santos LA, Souza LGA, Berbara RLL (2013) Humified insoluble solid for efficient decontamination of nickel and lead in industrial effluents. J Environ Chem Eng 1:916–924

    Article  Google Scholar 

  • García AC, Izquierdo FG, Berbara RLL (2014a) Effects of humic materials on plant metabolism an agricultural productivity. In: P. Ahmad (ed) 1:449–466

  • García AC, Santos LA, Izquierdo FG, Rumjanek VM, Castro RN, Santos FS, Souza LGA, Berbara RLL (2014b) Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). J Geochem Explor 136:48–54

    Article  Google Scholar 

  • García AC, de Souza LGA, Pereira MG, Castro RN, García-Mina JM, Zonta E, Lisboa FJG, Berbara RLL (2016) Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci Rep 6:20798

    Article  Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870

    Article  Google Scholar 

  • Gutiérrez-Miceli FA, Santiago-Borraz J, Molina JAM, Nafate CC, Abud-Archila M, Llaven MAO, Rincón-Rosales R, Dendooven L (2007) Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour Technol 98:2781–2786

    Article  Google Scholar 

  • Hernandez OL, Calderín A, Huelva R, Martínez-Balmori D, Guridi F, Aguiar NO, Olivares FL, Canellas LP (2015) Humic substances from vermicompost enhance urban lettuce production. Agron Sustain Dev 35:225–232

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Bull 347:1–32

    Google Scholar 

  • IHSS (2013) International Humic Substances Society. Available at: http://www.humicsubstances.org/

  • Jannin L, Arkoun M, Ourry A, Laîné P, Goux D, Garnica M, Fuentes M, Francisco MM, Baigorri R, Cruz F, Houdusse F, García-Mina JM, Yvin JC, Etienne P (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359:297–319

    Article  CAS  Google Scholar 

  • Joshi D, Hooda KS, Bhatt JC, Mina BL, Gupta HS (2009) Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot 28:608–615

    Article  Google Scholar 

  • Kumar MS, Rajiv P, Rajeshwari S, Venckatesh R (2015) Spectroscopic analysis of vermicompost for determination of nutritional quality. Spectrochim Acta 135:252–255

    Article  Google Scholar 

  • Li X, Meiyan X, Jian Y, Zhidong H (2011) Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J Hazard Mater 185:740–748

    Article  CAS  Google Scholar 

  • Martínez-Balmori D, Olivares FL, Spaccini R, Aguiar KP, Araújo MF, Aguiar NO, Guridi F, Canellas LP (2013) Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. J Anal Appl Pyrol 104:540–550

    Article  Google Scholar 

  • Miralles I, Piedra-Buena A, Almendros G, González-Vila FJ, González-Pérez JA (2015) Pyrolytic appraisal of the lignin signature in soil humic acids: assessment of its usefulness as carbon sequestration marker. J Anal Appl Pyrol 113:107–115

    Article  CAS  Google Scholar 

  • Mora V, Bacaicoa E, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    Article  CAS  Google Scholar 

  • Mora V, Baigorri R, Bacaicoa E, Zamarreno AM, García-Mina JM (2012) The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ Exp Bot 76:24–32

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Attiná E, Francioso O, Tugnoli V, Nardi S (2007) Biological activity of humic substances is related to their chemical structure. Soil Sci Soc Am J 71:75–85

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Nardi S (2013) Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J Geochem Explor 129:57–63

    Article  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2011) Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 12:1187–1199

    Article  CAS  Google Scholar 

  • Olivares FL, Aguiar NO, Rosa RCC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hortic-Amsterdam 183:100–108

    Article  Google Scholar 

  • Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z (1998) Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biol Fert Soils 26:23–27

    Article  CAS  Google Scholar 

  • Sahni S, Sarma BK, Singh DP, Singh HB, Singh KP (2008) Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Prot 27:369–376

    Article  CAS  Google Scholar 

  • Salter CE, Edwards CA (2014) The production of Vermicompost Aqueous Solutions or Teas. In: Edwards CA, Arancon NQ, Sherman R (eds) pp 153–164

  • Santos GA, Camargo FAO (1999) Fundamentos da Matéria Orgânica do Solo: Ecossistemas Tropicais e Subtropicais [Fundamentals of soil organic matter: tropical and subtropical ecosystems]. Ed. Genesis, Porto Alegre, Brasil, p. 102 pp

    Google Scholar 

  • Scaglia B, Nunes RR, Rezende MOO, Tambone F, Adani F (2016) Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. Sci Total Environ 562:289–295

    Article  CAS  Google Scholar 

  • Schmidt W, Santi S, Pinton R, Varanini Z (2007) Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil 300:59–267

    Article  Google Scholar 

  • Senesi N, Rizzi FR, Delino P (1996) Fractal dimension of humic acids in aquous suspension as a function of pH and time. Soil Sci Soc Am J 60:1773–1778

    Article  CAS  Google Scholar 

  • Shirshova LT, Ghabbour EA, Davies G (2006) Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma 133:204–216

    Article  Google Scholar 

  • Singh R, Sharma RR, Kumar S, Gupta RK, Patil RT (2008) Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresour Technol 99:8507–8511

    Article  CAS  Google Scholar 

  • Song G, Novotny EH, Simpson AJ, Clapp CE, Hayes MHB (2008) Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Eur J Soil Scie 59:505–516

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2007) Molecular characterization of compost at increasing stages of maturity: thermochemolysis-GC-MS and 13C CPMAS-NMR spectroscopy. J Agri Food Chem 55:2303–2311

    Article  CAS  Google Scholar 

  • Spaccini R, Baiano S, Gigliotti G, Piccolo A (2008) Molecular characterization of a compost and its water-soluble fractions. J Agri Food Chem 56:1017–1024

    Article  CAS  Google Scholar 

  • Traversa A, Loffredo E, Gattullo CE, Palazzo AJ, Bashore TL, Senesi N (2014) Comparative evaluation of compost humic acids and their effects on the germination of switchgrass (Panicum vigatum L.). J Soils Sediments 14:432–440

    Article  CAS  Google Scholar 

  • Trevisan S, Botton A, Vaccaro S, Vezzaro A, Quaggiotti S, Nardi S (2011) Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ Exp Bot 74:45–55

    Article  CAS  Google Scholar 

  • Vaccaro S, Muscolo A, Pizzeghello D, Spaccini R, Piccolo A, Nardi S (2009) Effect of a compost and its water-soluble fractions on key enzymes of nitrogen metabolism in maize seedlings. J Agr Food Chem 57:11267–11276

    Article  CAS  Google Scholar 

  • Zaller JG (2007) Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Hortic-Amsterdam 112:191–199

    Article  Google Scholar 

Download references

Acknowledgments

A.C.G. (sisFaperj 2012028010) thanks FAPERJ for his grant. A.C.G, R.L.L.B, and J.M.G.M thank the CNPq-CAPES for the PDJ scholarship and funding through the project Science without Borders—PVE A060/2013. The authors thank CAPES-MES project no. 46/2013, 215/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Calderín García.

Additional information

Responsible editor: Heike Knicker

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, A.C., Tavares, O.C.H., Balmori, D.M. et al. Structure-function relationship of vermicompost humic fractions for use in agriculture. J Soils Sediments 18, 1365–1375 (2018). https://doi.org/10.1007/s11368-016-1521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1521-3

Keywords

Navigation