Soil properties and plant community relationship in a saltmarsh of the Grado and Marano lagoon (northern Italy)

Abstract

Purpose

The relationship between soil properties and plant communities was investigated in a saltmarsh of the Grado and Marano lagoon (northern Italy), where hydrology and micromorphology strongly influence the features of the ecosystem. A multidisciplinary approach was used to assess the change of soil properties and plant communities in relation to the submergence of soil.

Materials and methods

The plant community and soil profile surveys were both carried out along a transect in six sampling sites of the Gran Chiusa saltmarsh (Grado and Marano lagoon). The morphological and physicochemical parameters of soil profiles were investigated, and soils were classified according to Soil Taxonomy. The concentration of macronutrients in both soils and plants was analysed by inductively coupled plasma-optical emission spectrometry. Cluster and linear discriminant analysis were used to assist the interpretation of the data of plant communities and soil properties, respectively. The bioconcentration factor explored the macronutrient relationship between plant community and soil.

Results and discussion

A high, middle and low zone were identified by clustering the different plant communities along the studied transect. Discriminant analysis showed how the increase in soil submergence supported the accumulation of S and Ca content and depletion of Fe and Na. The development of different plant communities was linked to both soil water saturation and to the capacity of halophytes to tolerate anoxic conditions or salinity, by extrusion or bioconcentration strategies.

Conclusions

This study demonstrates that tide level plays an important role in the pedological development and chemical transformations along a soil hydrosequence. The micromosaic vegetation pattern may therefore represent a useful index of the hydrological and nutritional status of the underlying soils and could be used to predict changes in coastal ecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Álvarez Rogel J, Ortiz Silla R, Alcaraz Ariza F (2001) Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 99:81–98

    Article  Google Scholar 

  2. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  3. Beaumont NJ, Austen MC, Atkins JP, Burdon D, Degraer S, Dentinho TP, Derous S, Holm P, Horton T, van Ierland E, Marboe AH, Starkey DJ, Townsend M, Zarzycki T (2007) Identification, definition and quantification of goods and services provided by marine biodiversity: implications for the ecosystem approach. Mar Pollut Bull 54:253–265

    CAS  Article  Google Scholar 

  4. Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM, Carli E, Casavecchia S, Copiz R, Del Vico E, Facioni L, Galdenzi D, Gasparri R, Lasen C, Pesaresi S, Poldini L, Sburlino G, Taffetani F, Vagge I, Zitti S, Zivkovic L (2014) Plant communities of Italy: the vegetation Prodrome. Plant Biosyst 148:728–814

    Article  Google Scholar 

  5. Brambati A, De Muro S, Marocco R, Selivanov A (1998) Barrier island evolution in relation to the sea-level changes: the example of the Grado lagoon (northern Adriatic Sea, Italy). Boll Geofis Teor Appl 39:145–161

    Google Scholar 

  6. Cahoon DR, Reed DJ, Day JW (1995) Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar Geol 128:1–9

    Article  Google Scholar 

  7. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602

    Article  Google Scholar 

  8. Cidu R, Vittori Antisari L, Biddau R, et al (2013) Dynamics of rare earth elements in water–soil systems: The case study of the Pineta San Vitale (Ravenna, Italy). Geoderma 193-194:52–67. doi:10.1016/j.geoderma.2012.10.009

  9. Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated check-list of the italian vascular flora. Palombi ed, Roma

    Google Scholar 

  10. Demas G, Rabenhorst MC (1999) Subaqueous soils : pedogenesis in a submersed environment. Soil Sci Soc Am J 63:1250–1257

    CAS  Article  Google Scholar 

  11. Demas GP, Rabenhorst MC (2001) Factors of subaqueous soil formation: a system of quantitative pedology for submersed environments. Geoderma 102:189–204

    CAS  Article  Google Scholar 

  12. Fanning DS, Fanning MCB (1989) Soil: morphology, genesis, and classification. John Wiley & Sons, New York

    Google Scholar 

  13. Fanning DS, Rabenhorst MC, Burch SN, Islam KR, Tangren SA (2002) Sulfides and sulfates. Soil mineralogy with environmental applications. SSSA, Madison, WI, pp. 229–260

    Google Scholar 

  14. Ferrarin C, Umgiesser G, Bajo M, Bellafiore D, De Pascalis F, Ghezzo M, Mattassi G, Scroccaro I (2010) Hydraulic zonation of the lagoons of Marano and Grado, Italy. A modelling approach. Estuar Coast Shelf Sci 87:561–572

    CAS  Article  Google Scholar 

  15. Ferronato C (2015) Water, sediment and soil physicochemical interaction in freshwater, brackish and saline systems. Dissertation, University of Bologna

  16. Ferronato C, Falsone G, Natale M, Zannoni D, Buscaroli A, Vianello G, Vittori L (2016) Chemical and pedological features of subaqueous and hydromorphic soils along a hydrosequence within a coastal system (San Vitale Park, northern Italy). Geoderma 265:141–151

    CAS  Article  Google Scholar 

  17. Fontolan G, Pillon S, Bezzi A, Villalta R, Lipizer M, Triches A, D’Aietti A (2012) Human impact and the historical transformation of saltmarshes in the Marano and Grado lagoon, northern Adriatic Sea. Estuar Coast Shelf Sci 113:41–56

    Article  Google Scholar 

  18. Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2010) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Chang 106:7–29

    Article  Google Scholar 

  19. Gee GW, Bauder JW (1986) Methods of soil analysis: part 1—physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy

    Google Scholar 

  20. Génin J-MR, Bourrié G, Trolard F, Abdelmoula M, Jaffrezic A, Refait P, Maitre V, Humbert B, Herbillon A (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)−Fe(III) green rusts: occurrences of the mineral in hydromorphic soils. Environ Sci Technol 32:1058–1068

    Article  Google Scholar 

  21. Gribsholt B, Kristensen E (2003) Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh. Limnol Oceanogr 48:2151–2162

    CAS  Article  Google Scholar 

  22. De Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L, Hussain S, Kumar P, McVittie A, Portela R, Rodriguez LC, ten Brink P, van Beukering P (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61

    Article  Google Scholar 

  23. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    CAS  Article  Google Scholar 

  24. Havill DC, Ingold A, Pearson J (1985) Sulphide tolerance in coastal halophytes. In: Beeftink WG, Rozema J, Huiskes AHL (eds) Ecology of coastal vegetation. Springer, Dordrecht, pp. 279–285

    Google Scholar 

  25. Homann PS, Grigal DF (1996) Below-ground organic carbon and decomposition potential in a field-forest glacial-outwash landscape. Biol Fertil Soils 23:207–214

    CAS  Article  Google Scholar 

  26. Ibáñez JJ, Zinck JA, Dazzi C (2013) Soil geography and diversity of the European biogeographical regions. Geoderma 192:142–153

    Article  Google Scholar 

  27. IPCC AR4 SYR (2007) Climate change 2007: synthesis report, contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerldand

    Google Scholar 

  28. ISPRA (2013) [Internet]. Available from: http://www.venezia.isprambiente.it/rete-meteo-mareografica

  29. Ivanov MV, Yu A, Reeburgh MS, Skyring GW (1989) Interaction of sulphur and carbon cycles in marine sediments. Evolution of global biogeochemical sulphur cycle John Wiley & Son Ltd., pp 61–78

  30. Julie KC, Siobhan FM (2001) Wetland plants: biology and ecology. CRC Press

  31. Karlsons A, Osvalde A, Ņečajeva J, Ievinsh G (2008) Changes of nutritional status of coastal plants Hydrocotyle vulgaris and Aster tripolium at elevated soil salinity. Acta Univ Latv 745:165–177

    Google Scholar 

  32. Koch MS, Mendelssohn IA, Mckee KL (1990) Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol Oceanogr 35:399–408

    CAS  Article  Google Scholar 

  33. Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105:141–153

    CAS  Article  Google Scholar 

  34. Li S-X, Zheng F-Y (2011) Effect of macronutrient enrichment on the size distribution, sorption, and bioconcentration factor of iron by coastal phytoplanktonic diatoms. Mar Environ Res 72:89–95

    CAS  Article  Google Scholar 

  35. Loeppert RH, Suarez DL (1996) Carbonate and gypsun. USDA-ARS/UNL Faculty

  36. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    CAS  Article  Google Scholar 

  37. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37

    Article  Google Scholar 

  38. McVey S, Schoeneberger PJ, Turenne J, Payne M, Wysocki DA (2012) Subaqueous soils (SAS) description. Field book for describing and sampling soils USA: Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE, pp 2–97

  39. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520

    CAS  Article  Google Scholar 

  40. Nyman J, DeLaune RD, Roberts HH, Patrick WH Jr (1993) Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar Ecol Prog Ser 96:269–279

    Article  Google Scholar 

  41. Orson RA, Warren RS, Niering WA (1998) Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuar Coast Shelf Sci 47:419–429

    Article  Google Scholar 

  42. OSMER (2016) [Internet]. Available from: http://www.meteo.fvg.it/clima.php?ln=&m=0

  43. Otero XL, Sánchez JM, Macías F (2000) Nutrient status in tall and short forms of Spartina maritima in the salt marshes of Ortigueira (NW Iberian peninsula) as related to physicochemical properties of the soils. Wetlands 20:461–469

    Article  Google Scholar 

  44. Pandey P, Tripathi AK (2010) Bioaccumulation of heavy metal in soil and different plant parts of Albizia procera (Roxb.) seedling. Bioscan 5:263–266

    Google Scholar 

  45. Pedersen O, Colmer TD, Sand-Jensen K (2013) Underwater photosynthesis of submerged plants - recent advances and methods. Front Plant Sci 4:140

    Article  Google Scholar 

  46. Peel MC, Bloschl G (2011) Hydrological modelling in a changing world. Prog Phys Geogr 35:249–261

    Article  Google Scholar 

  47. Poldini L, Vidali M, Fabiani ML (1999) La vegetazione del litorale sedimentario del Friuli-Venezia Giulia (NE Italia) con riferimenti alla regione alto-adriatica. Stud Geobot 17:3–68

    Google Scholar 

  48. Ponnamperuma F (1972) The chemistry of submerged soils. Adv Agron 24:29–95

    CAS  Article  Google Scholar 

  49. Reddy RK, DeLaume D (2008) Biochemistry of wetlands. CRC Press, Science and applications

    Google Scholar 

  50. Rogel JA, Ariza FA, Silla RO (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20:357–372. doi:10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2

  51. Salama RB, Otto CJ, Fitzpatrick RW (1999) Contributions of groundwater conditions to soil and water salinization. Hydrogeol J 7:46–64. doi:10.1007/s100400050179

  52. Sajna N, Regvar M, Kaligaric S, Škvorc Ž, Kaligaric M (2013) Germination characteristics of Salicornia patula Duval-Jouve, S. emerici Duval-Jouve, and S. veneta Pign. et Lausi and their occurrence in Croatia. Acta Bot Croat 72:347–358

    Google Scholar 

  53. Schoeneberger P, Wysocki DA, Benham ECJ (2012) Field book for describing and sampling soils, version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE, USA, USA

    Google Scholar 

  54. Silinski A, van Belzen J, Fransen E, Bouma TJ, Troch P, Meire P, Temmerman S (2016) Quantifying critical conditions for seaward expansion of tidal marshes: a transplantation experiment. Estuar Coast Shelf Sci 169:227–237

    Article  Google Scholar 

  55. Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62:119–130

    CAS  Article  Google Scholar 

  56. Simas T, Nunes J, Ferreira J (2001) Effects of global climate change on coastal salt marshes. Ecol Model 139:1–15

    CAS  Article  Google Scholar 

  57. Soil Survey Staff (2014) Keys to soil taxonomy. United States Department of Agriculture, Natural Resources Conservation Service, Lincoln

    Google Scholar 

  58. Souza I da C, LD R, Morozesk M, MM B, HP A, ID D, LM F, MV M, Mazik K, Elliott M, ST M, CRD M, DA W, MN F (2015) Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system. Mar Pollut Bull 94:176–184

    Article  Google Scholar 

  59. Stribling JM (1997) The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquat Bot 56:131–143

    CAS  Article  Google Scholar 

  60. Tonon G, Sohi S, Francioso O, Ferrari E, Montecchio D, Gioacchini P, Ciavatta C, Panzacchi P, Powlson D (2010) Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. Eur J Soil Sci 61:970–979

    CAS  Article  Google Scholar 

  61. UNEP (2006) Marine and coastal ecosystems and human wellbeing: a synthesis report based on the findings of the millennium ecosystem assessment. Banson production, UNEP

    Google Scholar 

  62. Ushakova SA, Kovaleva NP, Gribovskaya IV, Dolgushev VA, Tikhomirova NA (2005) Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Adv Space Res 36:1349–1353

    CAS  Article  Google Scholar 

  63. Vittori Antisari L, Carbone S, Ferronato C, Simoni A, Vianello G (2011) Characterization of heavy metals atmospheric deposition for urban environmental quality in the bologna city (Italy). EQA - Int J Environ Qual 7:49–63

    Google Scholar 

  64. Vittori Antisari L, De Nobili M, Ferronato C, Natale M, Pellegrini E, Vianello G (2016) Hydromorphic to subaqueous soils transitions in the Central Grado lagoon (northern Adriatic Sea, Italy). Estuar Coast Shelf Sci 173:39–48

    CAS  Article  Google Scholar 

  65. Warren RS, Niering WA (1993) Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74:96–103

    Article  Google Scholar 

  66. Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B (2015) Unabated global mean sea-level rise over the satellite altimeter era. Nat Clim Chang 5:565–568

    Article  Google Scholar 

  67. Van Wijnen HJ, Bakker JP (1999) Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. J Ecol 87:265–272

    Article  Google Scholar 

  68. Van Wijnen HJ, Bakker JP (2001) Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuar Coast Shelf Sci 52:381–390

    Article  Google Scholar 

  69. Wong JXW, Van Colen C, Airoldi L (2015) Nutrient levels modify saltmarsh responses to increased inundation in different soil types. Mar Environ Res 104:37–46

    CAS  Article  Google Scholar 

  70. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    CAS  Article  Google Scholar 

  71. Wysocki DA, Schoeneberger P, Hirmas D, La Garry H (2012) Geomorphology of soil landscapes. In: Huang PM et al. (eds) Handbook of soil science: properties and processes, 2nd edn. CRC Press, Taylor and Francis Group, LLC, Boca Raton, FL ISBN: 978–1–4398–0305–9

    Google Scholar 

  72. Zhang D, Yang M, Li J, Chen X (2006) Vegetative dispersal ability of Spartina alterniflora in eastern end of Chongming Island (Chinese). J East China Normal Univ 130–135

  73. Zuo P, Zhao S, Liu C, Wang C, Liang Y (2012) Distribution of Spartina spp. along China’s coast. Ecol Eng 40:160–166

Download references

Acknowledgments

Thanks are due to the Regional Agency for the Environmental Protection (ARPA) of Friuli Venezia Giulia for the technical support and evapotranspiration data and to the regional Protezione Civile for providing LiDAR data and orthophotos of sites.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chiara Ferronato.

Additional information

Responsible editor: Nives Ogrinc

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vittori Antisari, L., Ferronato, C., Pellegrini, E. et al. Soil properties and plant community relationship in a saltmarsh of the Grado and Marano lagoon (northern Italy). J Soils Sediments 17, 1862–1873 (2017). https://doi.org/10.1007/s11368-016-1510-6

Download citation

Keywords

  • Bioconcentration factor
  • Hydromorphic soil
  • Plant community
  • Saltmarsh
  • Subaqueous soil
  • Submergence
  • Transition