Skip to main content

Advertisement

Log in

Ammonium-nitrate dynamics in the critical zone during single irrigation events with untreated sewage effluents

  • SUITMA 8: Soils and Sediments in Urban and Mining Areas
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Previous studies in the Mezquital Valley evidenced that irrigation with untreated sewage effluent supplies two- to tenfold larger nitrogen doses to crops than common fertilizer recommendations. However, nitrate concentrations in the groundwater are only slightly above threshold concentrations for drinking water. To understand the N dynamics in this agroecosystem, we quantified nitrogen inputs, outputs, and transformations within the rooting zone and in the vadose zone down to the aquifer (i.e., in the critical zone).

Materials and methods

Single irrigation events were monitored in three different fields cropped with either annual rye grass (Lolium rigidum) or oats (Avena sativa L.) harvested for fodder. For each irrigation event, the total amount of water entering and leaving the field was quantified with a flowmeter. Soil pore water was collected with either microsuction cups or observation wells and groundwater was sampled at two wells. All water samples were analyzed for total nitrogen (Nt), ammonium nitrogen (NH4 +–N), nitrate nitrogen (NO3 –N), chloride (Cl−1), and pH. Organic N was calculated as the difference between total N and inorganic N. The water tension and the soil water content were monitored before, during, and after the irrigation with tensiometers and TDR probes, respectively, installed at different depths and at three sites within each field. Batch experiments were conducted to assess the NH4 + adsorption capacity of the soils.

Results and discussion

The irrigations added 537 to 727 kg ha−1 N in form of organic N (40 %) and NH4 +–N (60 %) to the fields. Crops absorbed 65 % of the N and 31 to 66 kg NO3 –N ha−1 leached out beyond the rooting zone (>40 to 130 cm). Batch experiments evidenced an ammonium adsorption capacity of 43 and 53 % of the input ammonium mass. Nitrification dominated over denitrification as the water infiltrated through the soil, evidenced by changes in nitrate concentrations and pH values in the soil pore water. The behavior of the total N/Cl ratio with depth indicated possible N losses due to NH3 volatilization at the field surface, a temporal withdrawal of N from the soil solution due to NH4 +–N adsorption in the rooting zone, as well as probable denitrification losses in the vadose zone.

Conclusions

Although the studied agroecosystem muses the large N inputs relative efficiently, between 7 and 10 % of the added N with each irrigation leaches beyond the crop root zone as nitrate. This is triggered by overflow irrigation, since up to 8,699,000 L of water with N concentrations of up to 50 mg total N L−1 infiltrate rapidly through macropores beyond the rooting zone. Additionally, ammonia volatilization and denitrification seem to be occurring. The latter could provide a self-cleaning potential to the system, if it reaches N2 and needs further verification. Nevertheless, N inputs to the system should match crop uptake to avoid groundwater and atmospheric pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel CDT, Sharma SK, Malolo YN, Maeng SK, Kennedy MD, Amy GL (2012) Attenuation of bulk organic matter, nutrients (N and P) and pathogen indicators during soil passage: effect of temperature and redox conditions in simulated aquifer treatment (SAT). Water Air Soil Pollut 223:5205–5220

    Article  CAS  Google Scholar 

  • Almanza-Garza V (2000) Reúso agrícola de las aguas residuales de Cd. Juárez, (Chih., México). En el Valle de Juárez y su impacto en la salud pública. Revista Salud Pública y Nutrición (FASPYN) 1 1–11 http://www.bvsde.ops-oms.org/bvsair/e/repindex/repi84/vleh/fulltext/acrobat/garza.pdf

  • Asano T, Burton F, Leverenz H (2007) Water reuse: issues, technologies and applications. McGraw Hill, New York

    Google Scholar 

  • British Geological Survey (BGS), Comisión Nacional del Agua (CNA), London School of Hygiene and Tropical Medicine (LSHTM), University of Birmingham (UB) (1998) Impact of wastewater reuse on groundwater in the Mezquital Valley, Hidalgo state, México. Final Report. Department for International Development, Comisión Nacional del Agua, British Geological Survey, London School of Hygiene and Tropical Medicine, University of Birmingham, pp 155

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Chávez A, Rodas K, Prado B et al (2012) An evaluation of the effects of changing wastewater irrigation regime for the production of alfalfa (Medicago sativa). Agric Water Manag 113:76–84

    Article  Google Scholar 

  • Chesnaux R, Allen DM (2008) Simulating nitrate leaching profiles in a highly permeable vadose zone. Environ Model Assess 13:527–539

    Article  Google Scholar 

  • CNA (2015) Comisión Nacional del Agua, Mexico. http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=42&Itemid=75.Accessed 18 October 2015

  • Costa JL, Massone H, Martínez D, Suero EE, Vidal CM, Bedmar F (2002) Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone. Agric Water Manag 57:33–47

    Article  Google Scholar 

  • ISRIC (Centro Internacional de Referencia e Información de Suelos) (1992) Procedures for soil analysis, 3 ed. Van Reeuwijk LP (eds) International Soil Reference and Information Centre, Wageningen

  • Del Arenal-Capetillo R (1985) Estudio hidrogeoquímico de la porción centro-oriental del Valle del Mezquital, Hidalgo. Rev Mex Cienc Geol 6:86–97

    Google Scholar 

  • Derby EN, Casey MFX, Knighton ER (2009) Long-term observations of vadose zone and groundwater nitrate concentrations under irrigated agriculture. Vadose Zone J 8:290–300

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources factors and mitigating strategies. Nutr Cycl Agroecosyst 46:237–256

    Article  Google Scholar 

  • Diez JA, Roman R, Caballero R, Caballero A (1997) Nitrate leaching from soils under a maize-wheat-maize sequence, two irrigation schedules and three types of fertilizers. Agr Ecosyst Environ 65:189–199

    Article  CAS  Google Scholar 

  • Du S-T, Zhang Y-S, Lin X-Y (2007) Accumulation of nitrate in vegetables and its possible implications to human health. Agric Sci China 6:1246–1255

    Article  CAS  Google Scholar 

  • Dungait JAJ, Cardenas LM, Blackwell MSA, Wu L, Withers PJA, Chadwick DR, Bol R, Murray PJ, Macdonald AJ, Whitmore AP, Goulding KWT (2012) Advances in the understanding of nutrient dynamics and management in UK agriculture. Sci Total Environ 434:39–50

    Article  CAS  Google Scholar 

  • Dworak T, Berlund M, Laaswer C, Strosser P, Roussard J, Grandmougin B, Kossida M, Kyriazopoulou I, Berbel J, Kolberg S, Rodríguez-Díaz JA, Montesinos P (2007) EU water saving potential. European Commission report, Brussels

    Google Scholar 

  • U.S. Environmental Protection Agency (2015) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2013. Washington, DC

  • FAO (1985) Water quality for agriculture. R.S. Ayers and D.W. Westcot. Irrigation and drainage paper. 29 Rev. 1 Rome 174 p. http://www.fao.org/DOCReP/003/T0234e/T0234E00.htm#pre. Accessed 28 October 2015

  • Feigin A, Ravina I, Shalhevet J (1991) Irrigation with treated sewage effluent. Management for environmental protection. Springer Verlag, Berlin, 224 pp

    Book  Google Scholar 

  • Ferguson BR (2015) Groundwater quality and nitrogen use efficiency in Nebraska’s Central Platte River Valley. J Environ Qual 44:449–459

    Article  CAS  Google Scholar 

  • Garg KK, Madan K, Jha MK, Kar S (2005) Field investigation of water movement and nitrate transport under perched water table conditions. Biosyst Eng 92:69–84

    Article  Google Scholar 

  • González-Méndez B, Webster R, Fiedler S, Loza-Reyes E, Hernández JM, Ruiz-SuárezLG SC (2015) Short-term emissions of CO2 and N2O in response to periodic flood irrigation with waste water in the Mezquital Valley of Mexico. Atmos Environ 101:116–124

    Article  Google Scholar 

  • Gouveia G, Eudoxie G (2002) Relationship between ammonium fixation and some soil properties and effect of cation treatment on fixed ammonium release in a range of Trinidad soils. Commun Soil Sci Plan 33:751–1765

    Article  Google Scholar 

  • Grahmann K, Verhulst N, Buerkert A, Ortiz-Monasterio I, Govaerts B (2013) Nitrogen use efficiency and optimization of nitrogen fertilization in conservation agriculture. CAB Rev 8(53):1749–8848

    Article  Google Scholar 

  • Gupta SK, Gupta RC, Chhabra SK, Eskiocak S, Gupta AB, Gupta R (2008) Health issues related to N pollution in water and air. Indian Agric Environ Health 94:1469–1477

    CAS  Google Scholar 

  • Gurdak JJ, Hanson TR, McMahon BP, Bruce BW, McCray JE, Thyne GD, Reedy RC (2007) Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA. Vadose Zone J 6:533–547

    Article  CAS  Google Scholar 

  • Hamilton JA, Stagnitti F, Xiong X et al (2007) Wastewater irrigation: the state of play. Vadose Zone J 6:823–840

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  • Hernández-Martínez JL, Prado B, Durán-Álvarez JC et al (2014) Movement of water and solutes in a wastewater irrigated piedmont. Procedia Earth Planet Sci 10:365–369

    Article  Google Scholar 

  • Jiménez B, Asano T (2008) World overview. Water reclamation and reuse around the world. Water reuse. An international survey of current practice, issues and needs. IWA Publishing, London

    Google Scholar 

  • Jiménez B, Chávez A (2004) Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source: “El Mezquital Valley” case. Water Sci Technol 50:269–276

    Google Scholar 

  • Jiménez CB, Siebe GC, Cifuentes GE (2005) El reúso intencional y no intencional del agua en el Valle de Tula. In: Jiménez B, Marín L (eds) El agua vista en México vista desde la academia. Academia Mexicana de Ciencias, México, pp 33–55

    Google Scholar 

  • Karr C (2012) Children’s environmental health in agricultural settings. J Agromedicine 17:127–139

    Article  Google Scholar 

  • Kass D (1996) Fertilidad de Suelos. San José, Costa Rica

  • Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudeiro E, Leistra M, van Schaik L (2012) Soil as a filter of groundwater quality. Curr Opin Environ Sustain 4:507–516

    Article  Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  • Lesser-Carrillo LE, Lesser-Illades JM, Arellano-Islas S, González-Posadas D (2011) Balance hídrico y calidad del agua subterránea en el acuífero del Valle Mezquital, México central. Rev Mex Cien Geol 28:323–336

    Google Scholar 

  • Mei L, Yang L, Wang D, Yin B, Hu J, Yin S (2004) Nitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emissions in submerged soils. Soil Biol Biochem 36:1057–1066

    Article  CAS  Google Scholar 

  • Miller JH, Ela WP, Lansey KE, Chipello PL, Arnold RG (2006) Nitrogen transformations during soil-aquifer treatment of wastewater effluent-oxygen effects in field studies. J Environ Eng 132:1298–1306

    Article  CAS  Google Scholar 

  • Navarro BS, Navarro GG (2003) Química Agrícola. El suelo y los elementos químicos esenciales para la vida vegetal. Madrid, España

  • Pereira Leal RF, Pittol FL, Herpin U, da fonseca AF, Montes CR, dos Santos Dias CT, Melfi AJ (2010) Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater. Agric Water Manag 97:271–276

    Article  Google Scholar 

  • Pihlatie M, Syväsalo E, Simojoki A, Esala M, Regina K (2004) Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sabs soils under different soil moisture conditions. Nutr Cycl Agroecosyst 70:135–141

    Article  CAS  Google Scholar 

  • Rahil HM, Antonopoulos ZV (2007) Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater. Agric Water Manag 92:142–150

    Article  Google Scholar 

  • Raschid-Sally L, Jayakody P (2008) Drivers and characteristics of wastewater agriculture in developing countries: results from a global assessment. Colombo, Sri Lanka: International Water Management Institute (IWMI Research Report 127)

  • Reid LM, Zhu X, Ma BL (2001) Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant Soil 237:1–14

    Article  CAS  Google Scholar 

  • Roy LV, Krapac IG, Chou SFJ et al (1991) Batch-type procedures for estimating soil adsorption of chemicals. U. S. EnvironmentalProtection Agency, Illinois

    Google Scholar 

  • SAGARPA (2011) Secretaría de agricultura, ganadería, desarrollo rural pesca y alimentación. Agenda de innovación tecnológica del estado de Hidalgo

  • SARH (1985) Secretaria de Agricultura y Recursos. Hidráulicos. Datos del laboratorio de Suelos y Aguas, México. Oficinas Centrales del Distrito de Riego 03, Mixquiahuala, Hidalgo

  • Schllichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Pareys Studientexte 81, Blackwell Wissenchafts. Verlag Berlin

  • Shomar B, Osenbrück K, Yahya A (2008) Elevated nitrate levels in the groundwater of the Gaza strip: distribution and sources. Sci Total Environ 398:164–174

    Article  CAS  Google Scholar 

  • Siebe Ch (1994) Akkumulation, Mobilität und Verfügbarkeit von Schwermetallen in lang jährig mit Abwasser bewässerten Böden Zentral Mexikos. Hohenheimer Bodenkundliche Hefte 17, Stuttgart, Institut für Bodenkunde und Standortslehre (ed), Universität Hohenheim

  • Siebe C (1998) Nutrient inputs to soils and their uptake by alfalfa through long-term irrigation with untreated sewage effluent in Mexico. Soil Use Manag 14:119–122

    Article  Google Scholar 

  • Siebe C, Jahn R, Stahr K (1996) Manual para la descripción y evaluación ecológica de suelos en campo. Publicación Especial 4. Sociedad Mexicana de Ciencia del Suelo, A. C. Chapingo, Edo. de México, México

  • Skeffington RA, Wilson JE (1988) Excess nitrogen deposition: issues for consideration. Environ Pollut 54:159–184

    Article  CAS  Google Scholar 

  • Sophocleous M, Townsend MA, Vocasek F, Ma L, Ashok KC (2010) Treated wastewater and nitrate transport beneath irrigated fields near Dodge City, Kansas. Curr Res Earth Sci Bull 258:1–31

    Google Scholar 

  • Stenger R, Barble G, Burgess C, Wall A, Clague J (2008) Low nitrate contamination of shallow groundwater in spite of intensive dairying: the effect of reducing conditions in the vadose zone-aquifer continuum. J Hydrol 47:1–24

    Google Scholar 

  • Tortora GJ, Funke BR, Case CL (2007) Microbiology: an introduction. California, USA

  • Van Reeuwijk LP (1992) Procedures for soil analysis. Technical paper No. 9. International Soil Reference and Information Center. Wageningen, The Netherlands

  • VenTe C, Mident RD, Mays LW (2000) Hidrología Aplicada. Santa Fe de Bogota

  • Wang Q, Li F, Zhao L, Zhang E, Shi S, Zhao W, Song W, Vance MM (2010) Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil 337:325–339

    Article  CAS  Google Scholar 

  • Ward HM, deKok MT, Levallois P, Brender J, Gulis G, Nolan BT, Vanderslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ Health Perspect 113:1607–1614

    Article  CAS  Google Scholar 

  • WHO (2008) Guidelines to drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda. Vol. 1. Recommendations, 3rd ed. World Health Organization, Geneva, pp 515

  • Withers JAP, Lord IE (2002) Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs. Sci Total Environ 282–283:9–24

    Article  Google Scholar 

  • Wlodarczyk T, Kotowska U (2006) Nitrate and ammonium transformation and redox potential changes in organic soil (Eutric Histosol) treated with municipal waste water. Int Agrophys 20:69–76

    CAS  Google Scholar 

  • Yaron B, Dror I, Berkowitz B (2008) Contaminant-induced irreversible changes in properties of the soil-vadose-aquifer zone: an overview. Chemosphere 71:1409–1421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lucero Hernández acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT) (CVU 166112) for her PhD Scholarship as does Mario Cayetano (CONACyT 245268). The authors thank Olivia Zamora, René Alcala, Kumiko Shimada, and Lucy Mora of the “Laboratorio de Edafología Ambiental” of the “Instituto de Geología,” UNAM, and are grateful to “Laboratorio Universitario de Nanotecnología Ambiental” (LUNA) of the CCADET, UNAM, for performing some of the analyses. The authors thank the support given by the Cornejo-Oviedo family from Las Palmas Ranch. This work was supported by the CONACyT (CB-2013-220489) and the DGAPA-PAPIIT, UNAM IN105715, and DGAPA PAPIME UNAM PE102113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Prado.

Additional information

Responsible editor: Maxine J. Levin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Martínez, J.L., Prado, B., Cayetano-Salazar, M. et al. Ammonium-nitrate dynamics in the critical zone during single irrigation events with untreated sewage effluents. J Soils Sediments 18, 467–480 (2018). https://doi.org/10.1007/s11368-016-1506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1506-2

Keywords

Navigation