Skip to main content
Log in

Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China

  • Sediments, Sec 1 • Sediment Quality and Impact Assessment • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Due to the impacts of natural processes and anthropogenic activities, different coastal wetlands are faced with variable patterns of heavy metal contamination. It is important to quantify the contributions of pollutant sources, in order to adopt appropriate protection measures for local ecosystems. The aim of this research was to compare the heavy metal contamination patterns of two contrasting coastal wetlands in eastern China. In addition, the contributions from various metal sources were identified and quantified, and influencing factors, such as the role of the plant Spartina alterniflora, were evaluated.

Materials and methods

Sediment samples were taken from two coastal wetlands (plain-type tidal flat at the Rudong (RD) wetland vs embayment-type tidal flat at Luoyuan Bay (LY)) to measure the content of Al, Fe, Co, Cr, Cu, Mn, Mo, Ni, Sr, Zn, Pb, Cd, and As. Inductively coupled plasma atomic emission spectrometry, flame atomic absorption spectrometry, and atomic fluorescence spectrometry methods were used for metal detection. Meanwhile, the enrichment factor and geoaccumulation index were applied to assess the pollution level. Principle component analysis and receptor modeling were used to quantify the sources of heavy metals.

Results and discussion

Marked differences in metal distribution patterns between the two systems were present. Metal contents in LY were higher than those in RD, except for Sr and Mo. The growth status of S. alterniflora influenced metal accumulations in RD, i.e., heavy metals were more easily adsorbed in the sediment in the following sequence: Cu > Cd > Zn > Cr > Al > Pb ≥ Ni ≥ Co > Fe > Sr ≥ Mn > As > Mo as a result of the presence and size of the vegetation. However, this phenomenon was not observed in LY. A higher potential ecological risk was associated with LY, compared with RD, except for Mo. Based on a receptor model output, sedimentary heavy metal contents at RD were jointly influenced by natural sedimentary processes and anthropogenic activities, whereas they were dominated by anthropogenic activities at LY.

Conclusions

A combination of geochemical analysis and modeling approaches was used to quantify the different types of natural and anthropogenic contributions to heavy metal contamination, which is useful for pollution assessments. The application of this approach reveals that natural and anthropogenic processes have different influences on the delivery and retention of metals at the two contrasting coastal wetlands. In addition, the presence and size of S. alterniflora can influence the level of metal contamination in sedimentary environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almeida CMR, Mucha AP, Vasconcelos MT (2011) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91:243–249

    Article  CAS  Google Scholar 

  • Bai JH, Xiao R, Zhang KJ, Gao HF (2012) Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J Hydrol 450–451:244–253

    Article  CAS  Google Scholar 

  • Broekaert JAC (2005) Analytical atomic spectrometry with flames and plasmas, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Chai MW, Shi FC, Li RL, Qiu GY, Liu FC, Liu LM (2014) Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol Plant 36:745–754

    Article  CAS  Google Scholar 

  • Chen HR (2011) Distribution and potential ecological risk assessment of heavy metals in surface sediments of Luoyuan bay. J Fujian Fish 33:45–49 (in Chinese)

    CAS  Google Scholar 

  • Chen S, Torres R (2012) Effects of geomorphology on the distribution of metal abundance in the salt marsh sediment. Estuar Coasts 35:1018–1027

    Article  CAS  Google Scholar 

  • Cheng P, Gao S, Li XS (2001) Evaluation of a wide range laser particle size analyses and comparison with pipette and sieving methods. Acta Sedimentol Sin 19:449–455 (in Chinese)

    Google Scholar 

  • Dietz R, Outridge PM, Hobson KA (2009) Anthropogenic contributions to mercury levels in present-day Arctic animals—a review. Sci Total Environ 407:6120–6131

    Article  CAS  Google Scholar 

  • Du Laing G, Vandecasteele B, Rinklebe J, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  CAS  Google Scholar 

  • Duarte B, Caetano M, Almeida PR, Vale C, Cacador I (2010) Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668

    Article  CAS  Google Scholar 

  • Fang TH, Li JY, Feng HM, Chen HY (2009) Distribution and contamination of trace metals in surface sediments of the East China Sea. Mar Environ Res 68:178–187

    Article  CAS  Google Scholar 

  • Fang SB, Jia XB, Yang XY, Li YD, An SQ (2012) A method of identifying priority spatial patterns for the management of potential ecological risks posed by heavy metals. J Hazard Mater 237–238:290–298

    Article  CAS  Google Scholar 

  • Feng H, Han X, Zhang W, Yu L (2004) A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar Pollut Bull 49:910–915

    Article  CAS  Google Scholar 

  • Gao WH, Du YF, Wang DD, Gao S (2012) Distribution patterns of heavy metals in surficial sediment and their influence on the environment quality of the intertidal flat of Luoyuan Bay, Fujian coast. Environ Sci 33:3097–3103 (in Chinese)

    Google Scholar 

  • Gao S, Du YF, Xie WJ, Gao WH, Wang DD, Wu XD (2014) Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines. Sci China Earth Sci 57:2567–2586

    Article  CAS  Google Scholar 

  • Garcia-Tarrason M, Pacho S, Jover L, Sanpera C (2013) Anthropogenic input of heavy metals in two Audouin’s gull breeding colonies. Mar Pollut Bull 74:285–290

    Article  CAS  Google Scholar 

  • Gomez SR (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921

    Google Scholar 

  • Han YM, Du PX, Cao JJ, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  CAS  Google Scholar 

  • Horowitz AJ, Elrick KA (1987) The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl Geochem 2:437–451

    Article  CAS  Google Scholar 

  • Hu BQ, Cui RY, Li J, Wei HL, Zhao JT, Bai FL, Song WY, Ding X (2013) Occurrence and distribution of heavy metals in surface sediments of the Changhua River estuary and adjacent shelf (Hainan Island). Mar Pollut Bull 76:400–405

    Article  CAS  Google Scholar 

  • Li CX, Zhang JQ, Fan DD, Deng B (2001) Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Mar Geol 173:97–120

    Article  Google Scholar 

  • Li L, Wang YL, Jiang M, Yuan Q, Shen XQ (2012) Analysis of the source, potential biological toxicity of heavy metals in the surface sediments from shellfish culture mudflats of Rudong Country, Jiangsu Province. Environ Sci 33:2607–2613 (in Chinese)

    Google Scholar 

  • Li FR, Duan LL, Wang FH (2013a) Research progress in heavy metal accumulation of the halophyte Spartina alterniflora. J Ecol Environ Sci 22:1263–1268 (in Chinese)

    Google Scholar 

  • Li GG, Hu BQ, Bi JQ, Leng QN, Xiao CQ, Yang ZC (2013b) Heavy metals distribution and contamination in surface sediments of the coastal Shandong Peninsula (Yellow Sea). Mar Pollut Bull 76:420–426

    Article  CAS  Google Scholar 

  • Liao Y, Huang HJ, Li L, Yuan Q, Jiang M, Shen XQ, Wang YL (2012) Distribution and potential ecological risk assessment of heavy metals in shellfish culture area of Rudong, Jiangsu Province, China. Environ Monit Assess 28:4–9 (in Chinese)

    Google Scholar 

  • Lin YC, Chang-Chien GP, Chiang PC, Chen WH, Lin YC (2013) Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Mar Pollut Bull 76:266–275

    Article  CAS  Google Scholar 

  • Liu F, Pang S, Chopin T, Gao S, Shan T, Zhao X, Li J (2013) Understanding the recurrent large-scale green tide in the Yellow Sea: temporal and spatial correlations between multiple geographical, aquacultural and biological factors. Mar Environ Res 83:38–47

    Article  CAS  Google Scholar 

  • Lu RK (2000) Soil agricultural chemistry analytical method. China Agriculture Press, Beijing

    Google Scholar 

  • Maanan M, Landesman C, Maanan M, Zourarah B, Fattal P, Sahabi M (2013) Evaluation of the anthropogenic influx of metal and metalloid contaminants into the Moulay Bousselham lagoon, Morocco, using chemometric methods coupled to geographical information systems. Environ Sci Pollut Res 20:4729–4741

    Article  CAS  Google Scholar 

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins-Veränderungen seit 1971. Umschau 79:778–783

    Google Scholar 

  • Pisani O, Oros DR, Oyo-Ita OE, Ekpo BO, Jaffe R, Simoneit BRT (2013) Biomarkers in surface sediments from the Cross River and estuary system, SE Nigeria: assessment of organic matter sources of natural and anthropogenic origins. Appl Geochem 31:239–250

    Article  CAS  Google Scholar 

  • Prasad MNV (1997) Trace metals. In: Prasad MNV (ed) Plant ecophysiology. Wiley, New York, pp 207–249

    Google Scholar 

  • Prosi F (1989) Factors controlling biological availability and toxic effects of lead in aquatic organisms. Sci Total Environ 79:157–169

    Article  CAS  Google Scholar 

  • Ren ME (1986) The bulletin of coastal zone and tidal flat resources survey in Jiangsu Province. China Ocean Press, Beijing

    Google Scholar 

  • Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF (2013) Chemometric techniques in distribution, characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Mar Pollut Bull 69:55–66

    Article  CAS  Google Scholar 

  • Sinex SA, Wright DA (1988) Distribution of trace metals in the sediments and biota of Chesapeake Bay. Mar Pollut Bull 19:425–431

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques—a case study. Anal Chim Acta 538:355–374

    Article  CAS  Google Scholar 

  • Song Y, Xie SD, Zhang YH, Zeng LM, Salmon LG, Zheng M (2006) Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci Total Environ 372:278–286

    Article  CAS  Google Scholar 

  • Sun J, Gu XY, Zhang AQ, Wang XR (2010) Organism qualities and pollution assessment at the Yellow Sea of Jiangsu Province. Mar Sci 34:28–33 (in Chinese)

    Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ 19:9–25

    Article  CAS  Google Scholar 

  • Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerance of plants. Plant Cell Environ 11:383–394

    Article  CAS  Google Scholar 

  • Wan YS, Zhang QN (1985) The source and movement of sediments of radiating sand ridges off Jiangsu coast. Oceanol et Limnol Sin 16:392–399 (in Chinese)

    Google Scholar 

  • Wang AJ, Ye X (2013) Erosion and deposition processes of cohesive sediment in Spartina alterniflora marsh, Luoyuan Bay in the north of Fujian coast, China. Quat Sci 33:582–593 (in Chinese)

    Google Scholar 

  • Wang Y, Zhu DK (1990) Tidal flats of China. Quat Sci 4:291–300 (in Chinese)

    Google Scholar 

  • Wang DD, Gao S, Du YF, Gao WH (2012) Distribution patterns of sediment chlorophyll-a in Spartina alterniflora salt marshes at Rudong coast of Jiangsu, East China. Chin J Ecol 31:2247–2254 (in Chinese)

    Google Scholar 

  • Wang SL, Xu XR, Sun YX, Liu JL, Li HB (2013a) Heavy metal pollution in coastal areas of South China: a review. Mar Pollut Bull 76:7–15

    Article  CAS  Google Scholar 

  • Wang AJ, Ye X, Li YH (2013b) Environmental dynamic mechanisms for sediment erosion and accretion over embayment coastal wetland during typhoon event: a case study from Luoyuan Bay, China. Acta Sedimentol Sin 31:315–324 (in Chinese)

    CAS  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollut Bull 28:277–290

    Article  CAS  Google Scholar 

  • Yu D (2013) Correlation analysis and countermeasure research of Luoyuan Bay heavy metal environment with coastal industrial layout. Dissertation, Dalian Maritime University, China

  • Zhang J (1995) Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuar Coast Shelf Sci 41:631–658

    Article  CAS  Google Scholar 

  • Zhang B (2010) Study on spatial variability and assessments of soil nutrients and heavy metals intertidal zones. Dissertation, Nanjing Agricultural University, China

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  • Zhang CS, Wang LJ, Li GS, Dong SS, Yang JG, Wang XL (2002) Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Appl Geochem 17:59–68

    Article  Google Scholar 

  • Zhang WG, Feng H, Chang J, Qu JG, Xie HX, Yu LZ (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    Article  CAS  Google Scholar 

  • Zhang B, Zheng QS, Zhao GM, Liu ZP (2011) Pollution assessments on heavy metals in sediment in inter-tidal aqua-farm area based on GIS and geostatistics. Mar Environ Sci 30:376–379 (in Chinese)

    CAS  Google Scholar 

  • Zhang R, Zhang F, Ding YJ, Gao JR, Chen J, Zhou L (2013) Historical trends in the anthropogenic heavy metal levels in the tidal flat sediments of Lianyungang, China. J Environ Sci 25:1458–1468

    Article  CAS  Google Scholar 

  • Zhang LH, Du YF, Wang DD, Gao S, Gao WH (2014) Distribution patterns and pollution assessments of heavy metals in the Spartina alterniflora salt-marsh wetland of Rudong, Jiangsu Province. Environ Sci 35:2401–2410 (in Chinese)

    Google Scholar 

  • Zhao YY, Yan MC (1994) Study method of sediment geochemistry of the China shelf sea. Science press, Beijing, p 203

    Google Scholar 

  • Zhou YW, Zhao B, Peng YS, Chen GZ (2010) Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Mar Pollut Bull 60:1319–1324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science and Technology of China (2013CB956504) and the National Natural Science Foundation of China (40906066). J. Ingels was supported by a Plymouth Marine Laboratory (PML) Postdoctoral Fellowship and a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (Grant Agreement FP7-PEOPLE-2011-IEF No 300879). We gratefully acknowledge Drs. Charles Nittrouer and Andrea Ogston, and anonymous reviewers, for their constructive comments on the original manuscript. Thanks are also due to Longhui Zhang and Deli Wu for their assistance in field sample collection and some previous work in laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfen Du.

Additional information

Responsible editor: Gijs D. Breedveld

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Du, Y., Gao, S. et al. Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China. J Soils Sediments 16, 1093–1108 (2016). https://doi.org/10.1007/s11368-015-1314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1314-0

Keywords

Navigation