Journal of Soils and Sediments

, Volume 16, Issue 4, pp 1193–1202 | Cite as

A simplified extraction schema to for the analytical characterization of apple orchard soils

  • Manfred SagerEmail author
Soil Pollution and Remediation



Standardized procedures for agricultural soil analysis use different extractant solutions, to determine one or just a few elements, which needs a lot of time and manpower. Within this work, it was tried to substitute traditional methods by the use of multi-element determination techniques, like inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) applied to a few solutions.

Material and methods

ICP-OES and ICP-MS have been applied to a sequence of extracts obtained with 0.16 M acetic acid and 0.1 M oxalate buffer pH 3, which are more suitable for the plasma than traditional salt extractant solutions. Dilute acetic acid should characterize exchangeables plus carbonates, and oxalate buffer the pedogenic oxides. Aqua regia extractions in glass have been replaced by pressure digestion with KClO3 in dilute nitric acid, which yields results equivalent to aqua regia, and additionally permits the determination of total sulfur, as well as acid-leachable boron and silicon. Total digestion was done in PTFE beakers by fuming with HNO3/HClO4, subsequently with HF, and final uptake in 1 + 1 HCl.

Results and discussion

The method was applied to 44 soils from apple orchards of different soil types and climatic zones. P and K obtained from standard acetate-lactate extract as well as B obtained from the Baron extract correlated with the results from the acetic acid extract better than 0.9. Just Mg from the CaCl2 extract (Schachtschabel) was independent from all other Mg fractions. The results of the total digests could be verified by XRF analysis of the solid, Ti recovery was the most critical item. The results for Ca, Cu, Mg, Mn, Sr, Pb, and Zn obtained from KClO3 digest and from totals, were strongly correlated. Factor analysis showed that the fraction mobilized by dilute acetic acid contained Ca-Mg-carbonates as well as Al-Ba-Na in the first factor, K-P-S in a second, whereas Mn-La-Li formed a group of its own. The pedogenic oxides, obtained from Al-Fe-Mn-Ti released in oxalate, carry most of the cationic trace elements, whereas the anions P-S-B-Si and the essentials Cu-Mo form different groups. Among the main elements, the quasi-total data were much less intercorrelated than the totals. The rare earth elements formed a strongly intercorrelated group as well after total digestion as in the oxalate leach.


The proposed method permits to obtain information about common cations including trace elements, and the nonmetals phosphorus, silicon, sulfur, boron, and iodine simultaneously, which could be a gate to find new relations among them. The two-step procedure permits to predict availabilities in shorter and longer periods of time. Data from the extract in dilute acetic acid for K, P, and B can substitute traditional methods of soil analysis.


Heavy metals Mobile fractions Nonmetals Rare earth elements Soil nutrients 


  1. (2006) Richtlinien für die fachgerechte Düngung (engl: guidelines for proper fertilization). BMLFuW, 6. Auflage 2006, Vienna, AustriaGoogle Scholar
  2. Borggaard OK (1992) Dissolution of poorly crystalline iron oxides in soils by EDTA and oxalate. Zeitschrift für Pflanzenern Bdk 155(5/6):431–436CrossRefGoogle Scholar
  3. Cantrell KJ, Byrne RH (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim Cosmochim Acta 51:597–605CrossRefGoogle Scholar
  4. Childs CW (1992) Ferrihydrite: a review of structure, properties and occurrence in relation to soils. Zeitschrift für Pflanzenern Bdk 155(5/6):441–448CrossRefGoogle Scholar
  5. Del Campillo MC, Torrent J (1992) A rapid oxalate extraction procedure for the determination of active Fe-oxide forms in calcareous soils. Zeitschrift für Pflanzenern Bdk 155(5/6):437–440CrossRefGoogle Scholar
  6. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895CrossRefGoogle Scholar
  7. Farrah H, Pickering WF (1978) Extraction of heavy metal ions sorbed on clays. Water Air Soil Pollut 9:491–498CrossRefGoogle Scholar
  8. Glaser B, Drechsel P (1992) Beziehungen zwischen verfügbarem Bodenphosphat und den Phosphatblattgehalten von Tectona grandes (Teak) in Westafrika. Z Pflanzenern Bdk 155:115–119CrossRefGoogle Scholar
  9. Kong T, Steffens D (1989) Bedeutung der Kalium-Verarmung in der Rhizosphäre und der Tonminerale für die Freisetzung von nichtaustauschbarem Kalium und dessen Bestimmung mit HCl. Z Pflanzenern Bdk 152:337–343CrossRefGoogle Scholar
  10. Li FL, Shan XQ, Zhang SZ (2001) Evaluation of single extractants for assessing plant availability of rare earth elements in soils. Commun Soil Sci Plant Anal 32(15&16):2577–2587CrossRefGoogle Scholar
  11. Psenner R, Pucsko R, Sager M (1984) Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten - Versuch einer Definition ökologisch wichtiger Fraktionen. Arch Hydrobiol Suppl 70:111–155Google Scholar
  12. Pueyo M, Rauret G, Bacon JR, Gomez A, Muntau H, Quevauviller P, López-Sánchez JF (2001) A new organic-rich soil reference material certified for ist EDTA- and aceitc acid- extractable contents of Cd, Cr, Cu, Ni, Pb and Zn, following collaboratively tested and harmonised procedures. J Environ Monit 3:238–242CrossRefGoogle Scholar
  13. Quevauviller P, Rauret G, Rubio R, López-Sánchez JF, Ure A, Bacon J, Muntau H (1997) Certified reference materials for the quality control of EDTA- and acetic acid – extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484). Fres J Anal Chem 357:611–618CrossRefGoogle Scholar
  14. Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure A, Davidson CM, Gomez A, Lück D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233CrossRefGoogle Scholar
  15. Sager M (1991) Adsorption und Desorption von Cr, Cu, Pb und Zn bei Böden, Bodentonen und Sedimenten, Arbeitsgemeinschaft Landwirtschaftlicher Versuchsanstalten, 23.5. 1991, InnsbruckGoogle Scholar
  16. Sager M (1991) Effect of the geochemical matrix on the adsorption/desorption- behaviour of Cr, Cu, Pb, and Zn in sediments, soils, and clays, deutschsprachige Limnologentagung 1991, 1.10. 1991, MondseeGoogle Scholar
  17. Sager M (1991) Zur Adsorption und Desorption von Cr, Cu, Pb, Tl und Zn- Ionen an Donausedimenten, Beitrag zur 29. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung, 16.-22.9.1991, KiewGoogle Scholar
  18. Sager M (1992) Chemical speciation and environmental mobility of heavy metals in sediments and soils. In: Stoeppler M (ed) Hazardous metals in the environment. Elsevier Science Publishers, AmsterdamGoogle Scholar
  19. Sager M (1999) Current interlaboratory precision of exchangeable soil fraction measurements, Accred. Qual Assur 4:299–306CrossRefGoogle Scholar
  20. Sager M (2002) Vertical mobility of Selenium, Arsenic and Sulfur in Model Soil Columns. Die Bodenkultur 53(2):83–103Google Scholar
  21. Sager M (2004) Effects of a fertilization pulse on migration of nutrient and trace elements in chernozem soil columns within a vegetation period. Die Bodenkultur 55(4):165–182Google Scholar
  22. Sager M (2005) Multi- Elementbestimmung in Fleisch, Leber und Nieren. Ernährung/ Nutrition 29(4):151–156Google Scholar
  23. Sager M (2011) Microwave- assisted digestion of organic materials with KClO3/HNO3 for the analysis of trace metals and non-metals. Anal Chem Indian J 10(2):101–108Google Scholar
  24. Sager M, Vogel W (1993) Heavy metal load of sediments of the River Gurk (Carinthia/Austria)—merits and limitations of sequential leaching. Acta Hydrochim Hydrobiol 21:21–34CrossRefGoogle Scholar
  25. Sager M, Belocky R, Pucsko R (1990) Zur Ermittlung der Bindungsformen von Haupt- und Spurenelementen in Sedimenten durch sequentielle Löseverfahren. Acta Hydrochim Hydrobiol 18:123–139Google Scholar
  26. Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Zeitschrift für Pflanzenern. Düngung Bdk 123(1):48–63Google Scholar
  27. Schweitzer K, Pagel H (2001) Einfluss niedriger pH-Werte auf den Gehalt amorpher Al- und Fe- Oxide, die P-Sorption und P- Nachlieferung in einem Sandboden. Mitt der Deutschen Bodenkundl Ges 96(1):283Google Scholar
  28. Tipping E, Thompson DW, Ohnstad M, Hetherington NB (1986) Effects of pH on the release of metals from naturally occurring oxides of Mn and Fe. Environ Technol Lett 7:109–114CrossRefGoogle Scholar
  29. Ure A, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission ot the European Communities. Int J Environ Anal Chem 51:135–151CrossRefGoogle Scholar
  30. Wang L, Reddy KJ, Munn LC (1994) Comparison of ammonium bicarbonate – DTPA, ammonium carbonate, and ammonium oxalate to assess th availability of molybdenum in mine spoils and soils. Commun Soil Sci Plant Anal 25(5&6):523–536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Austrian Agency for Health and Food SafetySpecial Investigations in Element AnalysisViennaAustria

Personalised recommendations