Skip to main content

Advertisement

Log in

Identifying sediment sources by applying a fingerprinting mixing model in a Pyrenean drainage catchment

  • Advances in Sediment Fingerprinting
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Spanish Pyrenean reservoirs are under pressure from high sediment yields in their contributing catchments. Sediment fingerprinting approaches offer the potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle, among other problems, reservoir siltation. Within this context, the objective of this study was to assess catchment source contribution changes both over a longitudinal river reach and to a reservoir delta deposit to improve our understanding of sediment supply dynamics.

Materials and methods

The catchment of the Isábena River (445 km2), located in the central Spanish Pyrenees, is an agroforest catchment supplying sediments, together with the Ésera River, to the Barasona reservoir at an annual rate of ~350 t km2 with implications for reservoir longevity. The ability to discriminate between agricultural, forest, subsoil and scrubland sources based on geochemical, radionuclide and magnetic susceptibility fingerprint properties analysed in the <63-μm sediment fraction was investigated by conducting statistical tests to select an optimum composite fingerprint. The contributions of sediment sources for channel bed and delta sediments were assessed by applying a new data processing methodology which was written in the C programming language and designed to test the entire parameter space, providing a detailed description of the optimal solution by a Monte Carlo method.

Results and discussion

The solution for each sample was characterised by the mean value of the user-defined solutions (n = 100) and the lower goodness of fit value was applied. The solutions from the mixing model had goodness of fit values >82 %. The channel bed sediments in the upper reach were dominated by subsoil sources (>80 %), and the lower reaches had a higher proportion of sediment coming from the agricultural source (>55 %). Contributions for delta sediments were dominated by agricultural, forest and subsoil sources but in varying proportions within the deposit. The switch in the sources of sediment between the headwaters and the catchment outlet was due to differences in the distribution of the land uses/land covers in the contributing areas. Differences between channel bed sediment and delta sediment source contributions were related to local sediment deposition conditions.

Conclusions

The new unmixing approach is able to provide the optimal solution by a robust and integral Monte Carlo method guaranteeing a broader interpretation of the optimal solution including its dispersion in all unmixing cases. The results support the use of sediment fingerprinting approaches in this Spanish Pyrenees mountain catchment, which will enable us to better understand catchment sediment delivery to an important water supply reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acornley RM, Sear DA (1999) Sediment transport and siltation of brown trout (Salmo trutta L.) spawning gravels in chalk streams. Hydrol Process 13:447–458

    Article  Google Scholar 

  • Alatorre LC, Beguería S (2009) Identification of eroded areas using remote sensing in a badlands landscape on marls in the central Spanish Pyrenees. Catena 76:182–190

    Article  Google Scholar 

  • Alatorre LC, Beguería S, García-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391:109–123

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harman RS (eds) Uranium-series disequilibrium: application to earth, marine and environmental sciences. Clarendon, Oxford, pp 731–738

    Google Scholar 

  • Avendaño-Salas C, Sanz-Montero E, Cobo-Rayán R, Gómez-Montaña JL (1997) Sediment yield at Spanish reservoirs and its relationship with the drainage basin area. In: Proceedings of the 19th symposium of large dams. ICOLD (International Committee on Large Dams), Florence, pp 863–874

    Google Scholar 

  • Blake WH, Ficken KJ, Taylor P, Russell MA, Walling DE (2012) Tracing crop-specific sediment sources in agricultural catchments. Geomorphology 139–140:322–329

    Article  Google Scholar 

  • Brosinsky A, Foerster S, Segl K, Kaufmann K (2014) Spectral fingerprinting: sediment source discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral properties. J Soils Sediments 14:1949–1964

    Article  Google Scholar 

  • Collins AL, Walling DE (2002) Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J Hydrol 261:218–244

    Article  CAS  Google Scholar 

  • Collins AL, Walling DE (2004) Documenting catchment suspended sediment sources: problems, approaches and prospects. Prog Phys Geogr 28:159–196

    Article  Google Scholar 

  • Collins AL, Walling DE, Leeks GJ (1997) Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29:1–27

    Article  CAS  Google Scholar 

  • Collins AL, Walling DE, Stroud RW, Robson M, Peet LM (2010a) Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom. Hydrol Process 24:1106–1122

    Article  Google Scholar 

  • Collins AL, Walling DE, Webb L, King P (2010b) Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weighting and prior information. Geoderma 155:249–261

    Article  Google Scholar 

  • Collins AL, Zhang YS, Duethmann D, Walling DE, Black KS (2013) Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale. Hydrol Process 27:959–974

    Article  Google Scholar 

  • Davis CM, Fox JF (2009) Sediment fingerprinting: review of the method and future improvements for allocating nonpoint source pollution. J Environ Eng 135:490–504

    Article  CAS  Google Scholar 

  • Devereux OH, Prestegaard KL, Needelman BA, Gellis AC (2010) Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland. Hydrol Process 24:1391–1403

    Article  Google Scholar 

  • Dirszowsky RW (2004) Bed sediment sources and mixing in the glacierized upper Fraser River watershed, east-central British Columbia. Earth Surf Process Landf 29:533–552

    Article  CAS  Google Scholar 

  • Evans R, Boardman J (1994) Assessment of water erosion in farmers’ fields in the UK. In: Rickson RJ (ed) Conserving soil resources: European perspectives. CAB International, Wallingford, pp 13–24

    Google Scholar 

  • Evrard O, Navratil O, Ayrault S, Ahmadi M, Némery J, Legout C, Lefèvre I, Poirel A, Bonté P, Esteves M (2011) Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment. Earth Surf Process Landf 36:1072–1089

    Article  CAS  Google Scholar 

  • Fargas D, Martínez Casasnovas JA, Poch R (1997) Identification of critical sediment source areas at regional level. Phys Chem Earth 22:355–359

    Article  Google Scholar 

  • García-Ruiz JM, Valero-Garcés BL (1998) Historical geomorphic processes and human activities in the Central Spanish Pyrenees. Mt Res Dev 18:309–320

    Article  Google Scholar 

  • García-Ruiz JM, Beguería S, López-Moreno JI, Lorente A, Seeger M (2001) Los Recursos hídricos superficiales del Pirineo aragonés y su evolución reciente. Geoforma Ediciones, Logroño, Spain

  • Gaspar L, Navas A (2013) Vertical and lateral distributions of 137Cs in cultivated and uncultivated soils on Mediterranean hillslopes. Geoderma 207–208:131–143

    Article  Google Scholar 

  • Gaspar L, Navas A, Walling DE, Machín J, Gómez Arozamena J (2013) Using 137Cs and 210Pbex to assess soil redistribution on slopes at different temporal scales. Catena 102:46–54

    Article  CAS  Google Scholar 

  • Gibbs MM (2008) Identifying source soils in contemporary estuarine sediments: a new compound-specific isotope method. Estuar Coast 31:344–359

    Article  Google Scholar 

  • Granger SJ, Bol R, Butler PJ, Haygarth PM, Naden P, Old G, Owens PN, Smith BPG (2007) Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: tracing sediment and organic matter. Hydrol Process 21:417–422

    Article  CAS  Google Scholar 

  • Grimshaw DL, Lewin J (1980) Source identification for suspended sediments. J Hydrol 47:151–162

    Article  Google Scholar 

  • Gruszowski KE, Foster IDL, Lees A (2003) Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrol Process 17:2664–2681

    Google Scholar 

  • Haddadchi A, Olley J, Laceby P (2014) Accuracy of mixing models in predicting sediment source contributions. Sci Total Environ 497:139–152

  • Hancock GJ, Revill AT (2013) Erosion source discrimination in a rural Australian catchment using compound-specific isotope analysis (CSIA). Hydrol Process 27:923–932

    Article  CAS  Google Scholar 

  • He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30:117–137

    Article  CAS  Google Scholar 

  • Horowitz AJ (1991) A primer on sediment-trace element chemistry. Sediment-trace element chemistry, 2nd edn. Lewis, Chelsea, p 136

    Google Scholar 

  • Horowitz AJ, Stephens VC (2008) The effects of land use on fluvial sediment chemistry for the conterminous US—results from the first cycle of the NAWQA program: trace and major elements, phosphorus, carbon, and sulfur. Sci Total Environ 400:290–314

    Article  CAS  Google Scholar 

  • Horowitz AJ, Stephens VC, Elrick KA, Smith JA (2012) Annual fluxes of sediment-associated trace/major elements, carbon, nutrients and sulphur from US coastal rivers. In: Collins AL, Golosov V, Horowitz AJ, Lu X, Stone M, Walling DE, Zhang X (eds) Erosion and sediment yields in the changing environment. IAHS Publ 356. IAHS, Wallingford, pp 39–48

    Google Scholar 

  • Hughes AO, Olley JM, Croke JC, McKergow LA (2009) Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology 104:262–275

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca Raton, p 315

    Google Scholar 

  • Koiter AJ, Owens PN, Petticrew EL, Lobb DA (2013) The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Sci Rev 125:24–42

    Article  CAS  Google Scholar 

  • Krein A, Petticrew EL, Udelhoven T (2003) The use of fine sediment fractal dimensions and color to determine sediment sources in a small watershed. Catena 53:165–179

    Article  CAS  Google Scholar 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. CRC Crit Rev Plant Sci 17:319–464

    Article  Google Scholar 

  • Lasanta T, Vicente-Serrano SM (2012) Complex land cover change processes in semiarid Mediterranean regions: an approach using Landsat images in northeast Spain. Remote Sens Environ 124:1–14

    Article  Google Scholar 

  • López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2009) Suspended sediment transport in a highly erodible catchment: the River Isábena (Southern Pyrenees). Geomorphology 109:210–221

    Article  Google Scholar 

  • López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2012) The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138:15–28

    Article  Google Scholar 

  • Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807

    Article  CAS  Google Scholar 

  • Mabit L, Benmansour M, Abril JM, Walling DE, Meusburger K, Iurian AR, Bernard C, Tarján S, Owens PN, Blake WH, Alewell C (2014) Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-Sci Rev 138:335–351

    Article  CAS  Google Scholar 

  • Mano V, Nemery J, Belleudy P, Poirel A (2009) Assessment of suspended sediment transport in four Alpine watersheds (France): influence of the climatic regime. Hydrol Process 23:777–792

    Article  Google Scholar 

  • Martínez-Carreras N, Udelhoven T, Krein A, Gallart F, Iffly JF, Ziebel J, Hoffmann L, Pfister L, Walling DE (2010a) The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: application to the Attert River catchment (Luxembourg). J Hydrol 382:49–63

    Article  Google Scholar 

  • Martínez-Carreras N, Krein A, Udelhoven T, Gallart F, Iffly JF, Hoffman L, Pfister L, Walling DE (2010b) A rapid spectral-reflectance based fingerprinting approach for documenting suspended sediment sources during storm runoff events. J Soils Sediments 10:400–413

    Article  Google Scholar 

  • Martínez-Carreras N, Krein A, Gallart F, Iffly JF, Pfister L, Hoffmann L, Owens PN (2010c) Assessment of different colour parameters for discriminating potential suspended sediment sources and provenance: a multi-scale study in Luxembourg. Geomorphology 118:118–129

    Article  Google Scholar 

  • Meybeck M, Laroche L, Dürr HH, Syvitski JPM (2003) Global variability of daily total suspended solids and their fluxes in rivers. Glob Planet Chang 39:65–93

    Article  Google Scholar 

  • Minella JPG, Walling DE, Merten GH (2008) Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields. J Hydrol 348:546–563

    Article  Google Scholar 

  • Mizugaki S, Onda Y, Fukuyama T, Koga S, Asai H, Hiramatsu S (2008) Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan. Hydrol Process 22:4519–4531

    Article  CAS  Google Scholar 

  • Molino B, Viparelli R, De Vincenzo A (2007) Effects of river network works and soil conservation measures on reservoir siltation. Int J Sediment Res 22:273–281

    Google Scholar 

  • Motha JA, Wallbrink PJ, Hairsine PB, Grayson RB (2003) Determining the sources of suspended sediment in a forested catchment in southeastern Australia. Water Resour Res 39:1059

    Google Scholar 

  • Mukundan R, Radcliffe DE, Ritchie JC, Risse LM, McKinley RA (2010) Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream. J Environ Qual 39:1328–1337

    Article  CAS  Google Scholar 

  • Mukundan R, Walling DE, Gellis AC, Slattery C, Radcliffe DE (2012) Sediment source fingerprinting: transforming from a research tool to a management tool. J Am Water Resour Assoc 48:1241–1257

    Article  Google Scholar 

  • Navas A, Machín J (2002) Spatial distribution of heavy metals and arsenic in soils of Aragón (northeast Spain): controlling factors and environmental implications. Appl Geochem 17:961–973

    Article  CAS  Google Scholar 

  • Navas A, Valero B, Machín J, Walling D (1998) Sediments of Joaquin Costa reservoir and the history of its deposit [Los sedimentos del embalse de Joaquín Costa y la historia de su depósito]. Limnetica 14:93–102

    Google Scholar 

  • Navas A, Valero-Garcés BL, Machín J (2004) An approach to integrated assessment of reservoir siltation: the Joaquín Costa reservoir as case study. Hydrol Earth System Sci 8:1193–1199

    Article  CAS  Google Scholar 

  • Navas A, Soto J, López-Martínez J (2005a) Radionuclides in soils of Byers Peninsula, South Shetland Islands, Western Antarctica. Appl Radiat Isot 62:809–816

    Article  CAS  Google Scholar 

  • Navas A, Machín J, Soto J (2005b) Mobility of natural radionuclides and selected major and trace elements along a soil toposequence in the central Spanish Pyrenees. Soil Sci 170:743–757

    Article  CAS  Google Scholar 

  • Navas A, Walling DE, Quine T, Machín J, Soto J, Domenech S, López-Vicente M (2007) Variability in 137Cs inventories and potential climatic and lithological controls in central Ebro valley, Spain. J Radioanal Nucl Chem 274:331–339

    Article  CAS  Google Scholar 

  • Navas A, Valero-Garcés BL, Gaspar L, Palazón L, Machín J (2011) Radionuclides and stable elements in the sediments of the Yesa Reservoir, Central Spanish Pyrenees. J Soils Sediments 11:1082–1098

    Article  CAS  Google Scholar 

  • Navas A, López-Vicente M, Gaspar L, Machín J (2013) Assessing soil redistribution in a complex karst catchment using fallout 137Cs and GIS. Geomorphology 196:231–241

    Article  Google Scholar 

  • Navas A, López-Vicente M, Gaspar L, Palazón L, Quijano L (2014) Establishing a tracer based sediment budget to preserve wetlands in Mediterranean mountain agroecosystems (NE Spain). Sci Total Environ 496:132–143

    Article  CAS  Google Scholar 

  • Navratil O, Evrard O, Esteves M, Legout C, Ayrault S, Némery J, Mate-Marin A, Ahmadi M, Lefèvre I, Poirel A, Bonté P (2012) Temporal variability of suspended sediment sources in an alpine catchment combining river/rainfall monitoring and sediment fingerprinting. Earth Surf Process Landf 37:828–846

    Article  Google Scholar 

  • Olley JM, Caitcheon G (2000) Major element chemistry of sediments from the Darling–Barwon river and its tributaries: implications for sediment and phosphorus sources. Hydrol Process 14:1159–1175

    Article  Google Scholar 

  • Owens PN, Walling DE, Leeks GJL (2000) Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model. In: Foster IDL (ed) Tracers in geomorphology. Wiley, Chichester, pp 291–308

    Google Scholar 

  • Owens PN, Blake WH, Giles TR, Williams ND (2012) Determining the effects of wildfire on sediment sources using 137Cs and unsupported 210Pb: the role of landscape disturbances and driving forces. J Soils Sediments 12:982–994

    Article  CAS  Google Scholar 

  • Palazón L, Navas A (2014) Modeling sediment sources and yields in a Pyrenean catchment draining to a large reservoir (Ésera River, Ebro Basin). J Soil Sediment 14:1612–1625

    Article  Google Scholar 

  • Palazón L, Gaspar L, Latorre B, Blake W, Navas A (2014) Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park. Solid Earth 5:963–978

    Article  Google Scholar 

  • Palazón L, Latorre B, Gaspar L, Blake WH, Smith HG, Navas A (2015) Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual mixtures. Sci Total Environ. doi:10.1016/j.scitotenv.2015.05.003

  • Peart MR, Walling DE (1986) Fingerprinting sediment sources: the example of a drainage basin in Devon, UK. In: Hadley RF (ed) Drainage basin sediment delivery. IAHS Publ 159. IAHS, Wallingford, pp 41–55

    Google Scholar 

  • Phillips JM, Russell MA, Walling DE (2000) Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol Process 14:2589–2602

    Article  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin, p 349

    Book  Google Scholar 

  • Schuller P, Walling DE, Iroumé A, Quilodrán C, Castillo A, Navas A (2013) Using 137Cs and 210Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile. J Environ Radioact 124:147–159

    Article  CAS  Google Scholar 

  • Smith HG, Blake WH (2014) Sediment fingerprinting in agricultural catchments: a critical re-examination of source discrimination and data corrections. Geomorphology 204:177–191

    Article  Google Scholar 

  • Valero-Garcés BL, Navas A, Machín J, Walling D (1999) Sediment sources and siltation in mountain reservoirs: a case study from the Central Spanish Pyrenees. Geomorphology 28:23–41

    Article  Google Scholar 

  • Van Cleef DJ (1994) Determination of 226Ra in soil using 214Pb and 214Bi immediately after sampling. Health Phys 67:288–289

    Article  Google Scholar 

  • Verdú JM, Batalla RJ, Martínez-Casasnovas JA (2006a) Estudio hidrológico de la cuenca del río Isábena (Cuenca del Ebro). I: variabilidad de la precipitación. Ingeniería del Agua 13:321–330

    Google Scholar 

  • Verdú JM, Batalla RJ, Martínez-Casasnovas JA (2006b) Estudio hidrológico de la cuenca del río Isábena (Cuenca del Ebro). II: Respuesta hidrológica. Ingeniería del Agua 13:331–343

    Google Scholar 

  • Walden J, Slattery MC, Burt TP (1997) Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. J Hydrol 202:353–372

    Article  Google Scholar 

  • Wallbrink PJ, Murray AS (1993) Use of fallout radionuclides as indicators of erosion processes. Hydrol Process 7:297–304

    Article  Google Scholar 

  • Wallbrink PJ, Murray AS, Olley JM (1999) Relating suspended sediment to its original depth using fallout radionuclides. Soil Sci Soc Am J 63:369–378

    Article  CAS  Google Scholar 

  • Walling DE (2003) Using environmental radionuclides as tracers in sediment budget investigations. In: Bogen J, Fergus T, Walling DE (eds) Erosion and sediment transport measurement in rivers: technological and methodological advances. IAHS Publ 283. IAHS, Wallingford, pp 57–78

    Google Scholar 

  • Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Total Environ 344:159–184

    Article  CAS  Google Scholar 

  • Walling DE (2013) The evolution of sediment source fingerprinting investigations in fluvial systems. J Soils Sediments 13:1658–1675

    Article  Google Scholar 

  • Walling DE, Collins AL, McMellin GK (2003) A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales. Hydrobiologia 497:91–108

    Article  Google Scholar 

  • Waters TF (1995) Sediment in streams: sources, biological effects and control. American Fisheries Society, Bethesda

    Google Scholar 

  • Wilkinson SN, Hancock GJ, Bartley R, Hawdon AA, Keen RJ (2012) Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agric Ecosyst Environ 180:90–102

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. In: Agricultural handbook 537. USDA, Agricultural Research Service, Washington

  • Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manag 21:203–217

    Article  Google Scholar 

  • Wood PJ, Armitage PD (1999) Sediment deposition in a small lowland stream: management implications. Regul Rivers 15:199–210

    Article  Google Scholar 

  • Yu L, Oldfield F (1989) A multivariate mixing model for identifying sediment source from magnetic measurements. Quat Res 32:168–181

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the project CGL2014-52986-R .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Palazón.

Additional information

Responsible editor: Oliver Evrard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palazón, L., Gaspar, L., Latorre, B. et al. Identifying sediment sources by applying a fingerprinting mixing model in a Pyrenean drainage catchment. J Soils Sediments 15, 2067–2085 (2015). https://doi.org/10.1007/s11368-015-1175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1175-6

Keywords

Navigation