Journal of Soils and Sediments

, Volume 16, Issue 4, pp 1238–1252 | Cite as

Geochemical characterisation of surface waters, topsoils and efflorescences in a historic metal-mining area in Spain

  • Carmen Pérez-SirventEmail author
  • Carmen Hernández-Pérez
  • María José Martínez-Sánchez
  • Mari Luz García-Lorenzo
  • Jaume Bech
Soil Pollution and Remediation



Mining activities generate large amounts of wastes that may contain potentially toxic elements (PTE), which, if released into the environment, may cause air, water and soil pollution long after mining operations have ceased. This paper describes the environmental relevance of efflorescences, topsoils and surface waters from the abandoned mine of Sierra Minera of Cartagena-La Unión, SE Spain. The exposure of the population to arsenic and the associated risk were also assessed.

Materials and methods

A total of 10 topsoils and surface waters and 11 efflorescences affected at varying degrees by mining activities were studied. The total potentially toxic element content (As, Cd, Cu, Fe, Pb and Zn) was determined in all samples. In addition, the mineralogical composition of solid samples was determined by X-ray diffraction and some efflorescences were also analysed using a scanning electron microscopy-energy dispersive X-ray spectrometer. Finally, an arsenic-intake risk assessment was carried out, both as regards carcinogenic and non-carcinogenic effects and considering the total and the bioaccesible As content.

Results and discussion

The study area is heavily polluted as a result of historical mining and processing activities, during which time great amounts of wastes were produced, characterised by a high PTE content, acidic pH and minerals resulting from supergene alteration. The supergene mineralogical assemblages include soluble metal salts, mainly sulphates, iron hydroxysulphates and iron oxyhydroxides, all of which form ochreous precipitates. Topsoil samples showed risk values and hazard quotients higher than the reference levels, particularly for children. In the efflorescences, these values were lower but still unacceptable.


The efflorescences are of significance for monitoring purposes because they are involved in cycles of retention release of hydrogen ions, sulphate and potentially toxic elements. In addition, in a semi-arid climate, such as the study area, these minerals contribute to our understanding of the response of the system to episodic rainfall events. In general, it was observed that the arsenic in collected samples represent a potential risk for human health through ingestion.


Acid mine drainage Potentially toxic elements Risk assessment Sulphate efflorescences 


  1. Basta NT, Rodriguez RR, Casteel SW (2001) Bioavailability and risk of arsenic exposure by the soil ingestion pathway. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, p 117Google Scholar
  2. Buckby T, Black S, Coleman ML, Hodson ME (2003) Fe-sulphate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Mineral Mag 67:263–278CrossRefGoogle Scholar
  3. Carbone C, Dinelli E, Marescotti P, Gasparotto G, Lucchetti G (2013) The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests. J Geochem Explor 132:188–200CrossRefGoogle Scholar
  4. Castillo S, de la Rosa J, Sánchez de la Campa JD, González-Castanedo Y, Fernández-Caliani JC, González I, Romero A (2013) Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci Total Environ 449:363–372CrossRefGoogle Scholar
  5. Conesa HM, Schulina R, Nowasck B (2008) Mining landscape: a cultural tourist opportunity or an environmental problem? The study case of the Cartagena–La Unión Mining District (SE Spain). Ecol Econ 64:690–700CrossRefGoogle Scholar
  6. Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy and mineral processing. J Geochem Explor 74:3–55CrossRefGoogle Scholar
  7. FAO-UNESCO (1990) Soil map of the world—revised legend. FAO, RomeGoogle Scholar
  8. Fernández-Ortiz de Vallejuelo S, Gredilla A, de Diego A, Arana G, Madariaga JM (2014) Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics. Sci Total Environ 473–474:359–371CrossRefGoogle Scholar
  9. García-Lorenzo ML, Martínez-Sánchez MJ, Pérez-Sirvent C (2014a) Application of a plant bioassay for the evaluation of ecotoxicological risks of heavy metals in sediments affected by mining activities. J Soils Sediments 14:1753–1765CrossRefGoogle Scholar
  10. García-Lorenzo ML, Martínez-Sánchez MJ, Pérez-Sirvent C, Agudo I, Recio C (2014b) Isotope geochemistry of waters affected by mining activities in Sierra Minera and Portman bay (SE, Spain). Appl Geochem 51:139–147CrossRefGoogle Scholar
  11. García-Lorenzo ML, Pérez-Sirvent C, Molina-Ruiz J, Martínez-Sánchez MJ (2014c) Mobility indices for the assessment of metal contamination in soils affected by old mining activities. J Geochem Explor 147(Part B):117–129CrossRefGoogle Scholar
  12. García-Rizo C, Martínez-Sánchez MJ, Pérez-Sirvent C (1999) Environmental transfer of zinc in calcareous soils in zones near old mining sites with semi-aridic climate. Chemosphere 39(2):209–227CrossRefGoogle Scholar
  13. González-Ciudad E (2014) Evaluación en nave cerrada de los riesgos para la salud en tecnosoles procedentes de residuos de minería polimetálica. Doctoral thesis, University of MurciaGoogle Scholar
  14. Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulphate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431CrossRefGoogle Scholar
  15. Harris DL, Lottermoser BG, Duchesne J (2003) Ephemeral acid mine drainage at the Montalbion silver mine, North Queensland. Aust J Earth Sci 50:797–809CrossRefGoogle Scholar
  16. Kelley ME, Brauning SE, Schoof RA, Ruby MV (2002) Assessing oral bioavailability of metals in soil. Battelle, ColumbiaGoogle Scholar
  17. López-García JA, Lunar R, Oyarzun R (1988) Silver and lead mineralogy in Gossan-type deposits of Sierra de Cartagena, southeast Spain. Trans Inst Min Metall, Sect B 97:82–88Google Scholar
  18. Lottermoser B (2007) Mine wastes- characterization, treatment and environmental impacts. Springer, BerlinGoogle Scholar
  19. Manteca JI, Ovejero G (1992) Los yacimientos Zn, Pb, Ag-Fe del distrito minero de La Unión-Cartagena, Bética Oriental. CSIC Textos Universitarios 15:1085–1110Google Scholar
  20. Martínez-Sánchez MJ, Pérez-Sirvent C (2013) Diagnóstico y Recuperación de la Contaminación del Suelo en Portmán-Sierra Minera. In: Baños González I, Baños Paéz P (eds) Portmán: de el “Portus Magnus” del Mediterráneo Occidental a la Bahía Aterrada. Editum, Murcia, pp 313–344Google Scholar
  21. Martínez-Sánchez MJ, Navarro MC, Pérez-Sirvent C, Marimón J, Vidal J, García-Lorenzo ML, Bech J (2008) Assessment of the mobility of metals in a mining-impacted coastal area (Spain, Western Mediterranean). J Geochem Explor 86:171–182CrossRefGoogle Scholar
  22. Martínez-Sánchez MJ, Martínez-López S, Martínez-Martínez LB, Pérez-Sirvent C (2013) Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone. J Environ Manag 116:10–17CrossRefGoogle Scholar
  23. Martínez-Sánchez MJ, García-Lorenzo ML, Pérez-Sirvent C, González E, Pérez V, Martínez S, Martínez L, Molina J (2014) Heavy metal immobilisation by limestone filler in soils contaminated by mining activities: effects on metal leaching and ecotoxicity. Int J Min Reclam Environ 28(6):414–425CrossRefGoogle Scholar
  24. Matusiewicz H (2003) Wet digestion methods. In: Mester Z, Sturgeon R (eds) Sample preparation for trace element analysis. Elsevier, Amsterdam, pp 195–235Google Scholar
  25. Meunier L, Koch I, Reimer KJ (2011) Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia. Sci Total Environ 409:2233–2243CrossRefGoogle Scholar
  26. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Marimón J (2006) Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere 63:484–489CrossRefGoogle Scholar
  27. Navarro-Hervás MC, Pérez-Sirvent C, Martínez-Sánchez MJ, García-Lorenzo ML, Molina J (2012) Weathering processes in waste materials from a mining area in a semiarid zone. Appl Geochem 27:1991–2000CrossRefGoogle Scholar
  28. Nordstrom DK (2011) Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl Geochem 26:1777–1791CrossRefGoogle Scholar
  29. Oen IS, Fernandez JC, Manteca JI (1975) The lead-zinc and associated ores of La Union, Sierra de Cartagena, Spain. Econ Geol 70:1259–1278CrossRefGoogle Scholar
  30. Ovejero G, Jacquin JP, Servajean G (1976) Les minéralisations et leur contexte géologique dans la Sierra de Cartagena (sud-est de léspagne). Bull Soc Geol Fr 7:619–633CrossRefGoogle Scholar
  31. Peña JA, Manteca JI, Martínez-Pagán P, Teixidó T (2013) Magnetic gradient map of the mine tailings in Portman Bay (Murcia, Spain) and its contribution to the understanding of the bay infilling process. J Appl Geophys 95:115–120CrossRefGoogle Scholar
  32. Peña-Fernández A, González-Muñoz MJ, Lobo-Bedmar MC (2014) Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ Int 72:176–185CrossRefGoogle Scholar
  33. Pérez-Sirvent C, Martínez-Sánchez J, García-Rizo C (1998) Lead mobilization in calcareous agricultural soils. In: Iskandar IK, Magdi Selim H (eds) Fate and transport of heavy metals in the vadose zone. CRC Press, Boca Raton, pp 177–199Google Scholar
  34. Pérez-Sirvent C, Martínez-Sánchez MJ, Martínez-López S, Bech J, Bolan N (2012) Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscose growing in mining-affected semiarid soils in southeast Spain. J Geochem Explor 123:128–135CrossRefGoogle Scholar
  35. Pérez-Sirvent C, Martínez-Sánchez MJ, García-Lorenzo ML, Hernández-Córdoba M, Molina J, Martínez S, González E, Pérez-Espinosa V (2014) A preliminary zonation to support the remediation and the risk assessment of an area contaminated by potential toxic elements in Murcia Region (SE, Spain). Procedia Earth Plan Sci 10:388–391CrossRefGoogle Scholar
  36. Robles-Arenas VM, Candela L (2010) Hydrological conceptual model characterisation of an abandoned mine site in semiarid climate. The Sierra de Cartagena-La Unión (SE Spain). Geol Acta 8(3):235–248Google Scholar
  37. Robles-Arenas VM, Rodríguez R, García C, Manteca JI, Candela L (2006) Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environ Geol 51:47–64CrossRefGoogle Scholar
  38. Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M, Edwards D, Cragin D, Chappell W (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705CrossRefGoogle Scholar
  39. Sainz de Baranda B, González de Tánago J, Viñals J (2003) Secondary minerals of the Mazarrón-Águilas mining district, Murcia province, Spain. Mineral Rec 34:315–334Google Scholar
  40. Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Eng 2:1785–1803CrossRefGoogle Scholar
  41. Smith RL (1996) Risk-based concentrations: prioritising environmental problems using limited data. Toxicology 106:243–266CrossRefGoogle Scholar
  42. US EPA (1989) Risk assessment guidance for superfund. Volume 1: human health evaluation manual (part A). Office of Emergency and Remedial ResponseGoogle Scholar
  43. US EPA (1998) Risk assessment guidance for superfund volume 1: human health evaluation manual (Part D)Google Scholar
  44. Valente TM, Leal Gomes CL (2009) Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407:1135–1152CrossRefGoogle Scholar
  45. Valente T, Antunes M, Braga MA, Pamplona J (2011) Geochemistry and mineralogy of ochre-precipitates formed as waste products of passive mine water treatment. Geochem Explor Environ Anal 11:103–106CrossRefGoogle Scholar
  46. Valente TM, Grande JA, de la Torre ML, Santiesteban M, Cerón JC (2013) Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Appl Geochem 39:11–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Carmen Pérez-Sirvent
    • 1
    Email author
  • Carmen Hernández-Pérez
    • 1
  • María José Martínez-Sánchez
    • 1
  • Mari Luz García-Lorenzo
    • 2
  • Jaume Bech
    • 3
  1. 1.Department of Agricultural Chemistry, Geology and Pedology, Faculty of ChemistryUniversity of MurciaMurciaSpain
  2. 2.Department of Petrology and Geochemistry, Faculty of GeologyUniversity Complutense of MadridMadridSpain
  3. 3.Soil Science Laboratory, Faculty of BiologyUniversity of Barcelona (UB)BarcelonaSpain

Personalised recommendations