Skip to main content

Advertisement

Log in

Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes

  • Frontiers in Soils and Sediments • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Climate change, especially global warming due to rising atmospheric carbon dioxide (CO2) concentration, has attracted much attention in the past century. Increasing efforts have been made to find solutions to mitigate the CO2 emission and sequester the existing CO2 in the atmosphere into land-based ecosystems. Forest ecosystems are the best effective way to fix the atmospheric CO2 by photosynthesis and allocate to tree biomass and into soils. Meanwhile, trees or forests will also respond to gradually increasing CO2 concentration and environment changes. It is important to quantify the dynamic interaction between the changing environment and activities of carbon (C) accumulation by forests with a proper method and also assess the status of the forest C stocks in response to climate and environmental changes.

Results and discussion

Estimation of forest aboveground C stock still experiences much uncertainty, even for the same forest ecosystem such as in the tropics, due to the different methods used. Most of the work has been based on inventory data and allometric equations to estimate biomass and calculate C stock by multiplying a C content coefficient. Great uncertainties exist because of the representativeness of the allometric equations, the differences in C content for different tree species, and the spatial heterogeneous nature of C distribution in the forest ecosystems. The development of remote sensing has stimulated applications of the technology in estimating forest aboveground C stocks at a larger scale. Remote sensing can reduce the uncertainty of spatial variations caused by extrapolation with the inventory methods, but it has the limitation of lacking the ability to express the processes involved in C accumulation and their responses to the changing environment. Tree growth and climate change information embedded in tree rings can be a good supplement to interpret the results acquired by the remote sensing technique.

Conclusions and perspectives

The application of remote sensing techniques offers a practical method for C stock estimates in forest ecosystems in the context of spatial variations. However, the long-term responses of forest C accumulation to the gradually changing environment and climate are still not well understood. Integrated study of combining remote sensing and ecological research techniques in forest ecosystems is necessary for future study to explore the mechanisms of interaction between forest development and the gradual changing environment and also to assess the C sequestration status and potential of forest ecosystems under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob Chang Biol 1:243–274

    Google Scholar 

  • Asner GP (2009a) Automated mapping of tropical deforestation and forest degradation: CLASlite. J Appl Remote Sens 3:033543

    Google Scholar 

  • Asner GP (2009b) Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ Res Lett 4:34009

    Google Scholar 

  • Asner GP, Flint Hughes R, Varga TA, Knapp DE, Kennedy-Bowdoin T (2008) Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 12:261–278

    Google Scholar 

  • Asner GP, Powell GV, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci U S A 107:16738–16742

    CAS  Google Scholar 

  • Asner GP, Hughes RF, Mascaro J, Uowolo AL, Knapp DE, Jacobson J, Kennedy-Bowdoin T, Clark JK (2011) High-resolution carbon mapping on the million-hectare Island of Hawaii. Front Ecol Environ 9:434–439

    Google Scholar 

  • Asner GP, Clark JK, Mascaro J, Galindo García GA, Chadwick KD, Navarrete Encinales DA, Paez-Acosta G, Cabrera Montenegro E, Kennedy-Bowdoin T, Duque Á, Balaji A, von Hildebrand P, Maatoug L, Phillips Bernal JF, Knapp DE, García Dávila MC, Jacobson J, Ordóñez MF (2012a) High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 9:2683–2696

    CAS  Google Scholar 

  • Asner GP, Clark JK, Mascaro J, Vaudry R, Chadwick KD, Vieilledent G, Rasamoelina M, Balaji A, Kennedy-Bowdoin T, Maatoug L, Colgan MS, Knapp DE (2012b) Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance Manag 7:2

    Google Scholar 

  • Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012c) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168:1147–1160

    Google Scholar 

  • Avitabile V, Herold M, Henry M, Schmullius C (2011) Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda. Carbon Balance Manag 6:7

    Google Scholar 

  • Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B, Grünwald T, Seufert G, Ciais P, Frank D (2013) Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–1303

    Google Scholar 

  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PS, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Chang 2:182–185

    CAS  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Fiore AD, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patiño S, Pitman NCA, Silva JN, Vásquez Martínez R (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562

    Google Scholar 

  • Basuki TM, van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag 257:1684–1694

    Google Scholar 

  • Beerling DJ, Mayle FE (2006) Contrasting effects of climate and CO2 on Amazonian ecosystems since the last glacial maximum. Glob Chang Biol 12:1977–1984

    Google Scholar 

  • Birdsey R, Pregitzer K, Lucier A (2006) Forest carbon management in the United States: 1600–2100. J Environ Qual 35:1461–1469

    CAS  Google Scholar 

  • Bowers MC, Gao JB, Tung WW (2013) Long range correlations in tree ring chronologies of the USA: variation within and across species. Geophys Res Lett 40:568–572

    Google Scholar 

  • Brown S (1993) Tropical forests and the global carbon cycle: the need for sustainable land-use patterns. Agric Ecosyst Environ 46:31–44

    CAS  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forest Resources Assessment Publication, Rome

    Google Scholar 

  • Burrows WH, Henry BK, Back PV, Hoffmann MB, Tait LJ, Anderson ER, Menke N, Danaher T, Carter JO, McKeon GM (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Glob Chang Biol 8:769–784

    Google Scholar 

  • Cao M, Woodward FI (1998a) Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Chang Biol 4:185–198

    Google Scholar 

  • Cao MK, Woodward FI (1998b) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    CAS  Google Scholar 

  • Chambers JQ, Asner GP, Morton DC, Anderson LO, Saatchi SS, Espírito-Santo FDB, Palace M, Souza C Jr (2007) Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol Evol 22:414–423

    Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Phil Trans R Soc Lon B 359:409–420

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    CAS  Google Scholar 

  • Cortés L, Hernández J, Valencia D, Corvalán P (2014) Estimation of above-ground forest biomass using Landsat ETM+, Aster GDEM and Lidar. Forest Res 3:117

    Google Scholar 

  • Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333

    CAS  Google Scholar 

  • Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C, Rixen C (2010) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J Ecol 99:383–394

    Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sens Environ 84:393–410

    Google Scholar 

  • Egglestion S, Buendia L, Miwa K, Ngara T, Tanabe K (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4 Agriculture, Forestry and Other Land Use. Institute for Global Environmental Strategies (IGES), Hayama, Japan

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    CAS  Google Scholar 

  • Farquhar GD, Hubick KT, Condon AG, Richards RA (1989) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Ecological studies, vol 68. Springer, New York, pp 21–40

    Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJ, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, França MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patiño S, Peh KS, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonké B, Taedoumg HE, Tan S, White L, Wöll H, Lloyd J (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Google Scholar 

  • Gagen M, McCarroll D, Edouard J-L (2006) Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the southern French Alps. Clim Chang 78:363–379

    CAS  Google Scholar 

  • García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114:816–830

    Google Scholar 

  • García-Suárez AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27:183–198

    Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:45023

    Google Scholar 

  • Goetz SJ, Baccini A, Laporte NT, Johns T, Walker W, Kellndorfer J, Houghton RA, Sun M (2009) Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manag 4:2

    Google Scholar 

  • Gómez-Guerrero A, Silva LC, Barrera-Reyes M, Kishchuk B, Velázquez-Martínez A, Martínez-Trinidad T, Plascencia-Escalante FO, Horwath WR (2013) Growth decline and divergent tree ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests. Glob Chang Biol 19:1748–1758

    Google Scholar 

  • Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M (2010) Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens Environ 114:1561–1575

    Google Scholar 

  • Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92:189–202

    CAS  Google Scholar 

  • Hamdan O, Hasmadi IM, Aziz HK (2014) Combination of SPOT-5 and ALOS PALSAR images in estimating aboveground biomass of lowland Dipterocarp forest. Earth Environ Sci 18:012016, IOP Conference Series

    Google Scholar 

  • Hashimotio T, Kojima K, Tange T, Sasaki S (2000) Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. For Ecol Manage 126:331–337

    Google Scholar 

  • Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-andré L (2011) Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fenn 45:477–569

    Google Scholar 

  • Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G, Vieilledent G, Santenoise P, Longuetaud F, Valentini R, Picard N, Saint-André L (2013) GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. Forest 6:326–330

    Google Scholar 

  • Hirata R, Takagi K, Ito A, Hirano T, Saigusa N (2014) The impact of climate variation and disturbances on the carbon balance of forests in Hokkaido, Japan. Biogeosci Discuss 11:2847–2885

    Google Scholar 

  • Holdaway RJ, McNeill SJ, Mason NWH, Carswell FE (2014) Propagating uncertainty in plot-based estimates of forest carbon stock and carbon stock change. Ecosystems 17:627–640

    CAS  Google Scholar 

  • Holland EA, Braswell BH, Lamarque J-F, Townsend A, Sulzman J, Müller J-F, Dentener F, Brasseur G, Levy H II, Penner JE, Roelofs G-J (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res 102:15849

    CAS  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Chang Biol 11:945–958

    Google Scholar 

  • Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res 114:G00E03

    Google Scholar 

  • Huang CY, Asner GP, Martin RE, Barger NN, Neff JC (2009) Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands. Ecol Appl 19:668–681

    CAS  Google Scholar 

  • Huang JX, Zeng Y, Kuusk A, Wu BF (2011a) Inverting a forest canopy reflectance model to retrieve the overstorey and understorey leaf area index for forest stands. Int J Remote Sens 32:7591–7611

    Google Scholar 

  • Huang JX, Zeng Y, Wu WB, Mao KB, Xu JY, Su W (2011b) Estimation of overstory and understory leaf area index by combining Hyperion and panchromatic Quickbird data using neural network method. Sensor Lett 9:964–973

    Google Scholar 

  • Kauppi PE, Tomppo E, Ferm A (1995) C and N storage in living trees within Finland since 1950s. Plant Soil 168–169:633–638

    Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305

    Google Scholar 

  • Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146:199–209

    Google Scholar 

  • Krankina ON, Houghton RA, Harmon ME, Hogg EH, Butman D, Yatskov M, Huso M, Treyfeld RF, Razuvaev VN, Spycher G (2005) Effects of climate, disturbance, and species on forest biomass across Russia. Can J For Res 35:2281–2293

    Google Scholar 

  • Kuang YW, Sun FF, Wen DZ, Xu ZH, Huang LB, Li J (2011) Nitrogen deposition influences nitrogen isotope composition in soil and needles of Pinus massoniana forests along an urban-rural gradient in the Pearl River Delta of south China. J Soils Sediments 11:589–595

    CAS  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Manage 118:127–138

    Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002a) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399

    Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002b) Lidar remote sensing for ecosystem studies. Bioscience 52:19–30

    Google Scholar 

  • Lefsky MA, Turner DP, Guzy M, Cohen WB (2005) Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity. Remote Sens Environ 95:549–558

    Google Scholar 

  • Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manage 188:211–224

    Google Scholar 

  • Leonardi S, Gentilesca T, Guerrieri R, Ripullone F, Magnani F, Mencuccini M, Noije TV, Borghetti M (2012) Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Glob Chang Biol 18:2925–2944

    Google Scholar 

  • Li DQ, Ju WM, Fan WY, Gu ZJ (2014) Estimating the age of deciduous forests in northeast China with Enhanced Thematic Mapper Plus data acquired in different phenological seasons. J Appl Remote Sens 8:83670

    Google Scholar 

  • Liu YC, Zhang YD, Liu SR (2012) Aboveground carbon stock evaluation with different restoration approaches using tree ring chronosequences in Southwest China. For Ecol Manage 263:39–46

    Google Scholar 

  • Lopatin E, Kolstrom T, Spiecker H (2006) Determination of forest growth trends in Komi Republic (northwestern Russia): combination of tree-ring analysis and remote sensing data. Boreal Environ Res 11:341–353

    Google Scholar 

  • Losi CJ, Siccama TG, Condit R, Morales JE (2003) Analysis of alternative methods for estimating carbon stock in young tropical plantations. For Ecol Manage 184:355–368

    Google Scholar 

  • Löwe H, Seufert G, Raes F (2000) Comparison of methods used within Member States for estimating CO2 emissions and sinks according to UNFCCC and EU Monitoring Mechanism: forest and other wooded land. Biotechnol Agr Soc Environ 4:315–319

    Google Scholar 

  • Mascaro J, Asner GP, Muller-Landau HC, van Breugel M, Hall J, Dahlin K (2011) Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences 8:1615–1629

    Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci U S A 98:14784–14789

    CAS  Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011a) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    CAS  Google Scholar 

  • Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F (2011b) Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–732

    Google Scholar 

  • Paoli GD, Curran LM, Slik JW (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299

    Google Scholar 

  • Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334:55–58

    Google Scholar 

  • Patenaude G, Milne R, Dawson TP (2005) Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol. Environ Sci Policy 8:161–178

    CAS  Google Scholar 

  • Pflugmacher D, Cohen WB, Kennedy RE, Yang Z (2014) Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens Environ 151:124–137

    Google Scholar 

  • Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJ, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Google Scholar 

  • Reverchon F, Xu ZH, Blumfield TJ, Chen CR, Abdullah KM (2012) Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems. J Soils Sediments 12:150–160

    Google Scholar 

  • Saatchi SS, Houghton RA, Dos Santos AlvalÁ RC, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Glob Chang Biol 13:816–837

    Google Scholar 

  • Sanquetta CR, Corte AP, da Silva F (2011) Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance Manag 6:6

    Google Scholar 

  • Schalk CPV, Mirmanto E (1985) Spatial variation in the structure and litterfall of a Sumatran rain forest. Biotropica 17:196–205

    Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manage 262:947–961

    Google Scholar 

  • Schöngart J, Arieira J, Felfili Fortes C, Cezarine de Arruda E, Nunes da Cunha C (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421

    Google Scholar 

  • Sedjo RA (1993) The carbon-cycle and global forest ecosystem. Water, Air, Soil Pollut 70:295–307

    CAS  Google Scholar 

  • Shao Q, Huang L, Liu J, Yang H, Chen Z (2009) Dynamic analysis on carbon accumulation of a plantation in Qianyanzhou based on tree ring data. J Geogr Sci 19:691–706

    Google Scholar 

  • Sherwood S, Fu Q (2014) Climate change. A drier future? Science 343:737–739

    CAS  Google Scholar 

  • Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res 115:G00E13

    Google Scholar 

  • Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157

    Google Scholar 

  • Sun FF, Kuang YW, Wen DZ, Xu ZH, Li JL, Zuo WD, Hou EQ (2010) Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China. J Soils Sediments 10:1453–1465

    CAS  Google Scholar 

  • Supriya Devi L, Yadava PS (2009) Aboveground biomass and net primary production of semi-evergreen tropical forest of Manipur, north-eastern India. J For Res 20:151–155

    Google Scholar 

  • Tangley L (2001) Greenhouse effects: high CO2 levels may give fast-growing trees an edge. Science 292:36–37

    CAS  Google Scholar 

  • Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manage 97:1–24

    Google Scholar 

  • Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM (1999) Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens Environ 70:52–68

    Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JG, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Google Scholar 

  • Wang J, Rich PM, Price KP, Kettle WD (2004) Relations between NDVI and tree productivity in the central Great Plains. Int J Remote Sens 25:3127–3138

    Google Scholar 

  • Worbes M, Raschke N (2012) Carbon allocation in a Costa Rican dry forest derived from tree ring analysis. Dendrochronologia 30:231–238

    Google Scholar 

  • Xu ZH, Chen CR (2006) Fingerprinting global climate change and forest management within rhizosphere carbon and nutrient cycling processes. Environ Sci Pollut Res 13:293–298

    Google Scholar 

  • Xu ZH, Saffigna PG, Farquhar GD, Simpson JA, Haines RJ, Walker S, Osborne DO, Guinto D (2000) Carbon isotope discrimination and oxygen isotope composition in clones of the F(1) hybrid between slash pine and Caribbean pine in relation to tree growth, water-use efficiency and foliar nutrient concentration. Tree Physiol 20:1209–1217

    CAS  Google Scholar 

  • Xu ZH, Ward S, Chen CR, Blumfield T, Prasolova N, Liu JX (2008) Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. J Soils Sediments 8:99–105

    CAS  Google Scholar 

  • Xu ZH, Chen CR, He JZ, Liu JX (2009) Trends and challenges in soil research 2009: linking global climate change to local long-term forest productivity. J Soils Sediments 9:83–88

    Google Scholar 

  • Xu Y, Li WJ, Shao XM, Xu ZH, Nugroho P (2014) Long-term trends in intrinsic water-use efficiency and growth of subtropical Pinus tabulaeformis Carr. and Pinus taiwanensis Hayata in central China. J Soils Sediments 14:917–927

    CAS  Google Scholar 

  • Zeng Y, Huang JX, Wu BF, Schaepman ME, Bruin SD, Clevers JGPW (2008a) Comparison of the inversion of two canopy reflectance models for mapping forest crown closure using imaging spectroscopy. Can J Remote Sens 34:235–244

    Google Scholar 

  • Zeng Y, Schaepman M, Wu BF, Clevers J, Bregt A (2008b) Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China. Remote Sens Environ 112:4261–4271

    Google Scholar 

  • Zeng Y, Schaepman ME, Wu BF, Clevers JGPW, Bregt AK (2009) Quantitative forest canopy structure assessment using an inverted geometric‐optical model and up‐scaling. Int J Remote Sens 30:1385–1406

    Google Scholar 

  • Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB (2014) Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens Environ 151:44–56

    Google Scholar 

Download references

Acknowledgments

The research is supported by the “Strategic Priority Research Program—Climate Change: Carbon Budget and Related Issues” of the Chinese Academy of Sciences, Grant No. XDA05050108.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Xu or Bingfang Wu.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhao, Y., Xu, Z. et al. Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. J Soils Sediments 15, 249–259 (2015). https://doi.org/10.1007/s11368-014-1050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-1050-x

Keywords

Navigation