Skip to main content
Log in

Response of archaeal communities to water regimes under simulated warming and drought conditions in Tibetan Plateau wetlands

  • SOILS, SEC 5 • SOIL AND LANDSCAPE ECOLOGY • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Understanding how archaeal communities are affected by water-table drawdown is essential for predicting soil functional responses to future climate change and the consequences of the responses on the soil carbon cycle.

Material and methods

We investigated the effect of water-table drawdown, warming, drought, and combinations thereof on archaeal communities using terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR.

Results and discussion

Methanosarcinales, Methanosaeta, Methanomicrobiales, Methanobacteriales, uncultured Rice Cluster II (RC-II), and uncultured Crenarchaeota were detected. Water-table drawdown and drought exhibited significant effects on the archaeal communities. When the water table was at or above 10 cm, the archaeal abundance at 10 cm remained high (approximately 109 cells per gram dry soil), whereas the archaeal abundance at 10 cm was reduced to approximately 108 cells per gram dry soil where the water table was lowered to 20 cm or below. When the water table kept constant, warming caused a significant reduction in the archaeal abundance, whereas drought only caused a decrease in archaeal abundance when the water table was higher than −20 cm.

Conclusions

Results suggest that changes in water table may directly impact archaeal community abundance and assemblage which can in turn influence methane emissions, potentially on a large scale. Our results also indicate that archaeal communities response to water-table drawdowns that are dependent on the initial ecohydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  Google Scholar 

  • Basiliko N, Yavitt JB, Dees PM, Merkel SM (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol J 20:563–577

    Article  CAS  Google Scholar 

  • Blodau C, Basiliko N, Moore T (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351

    Article  CAS  Google Scholar 

  • Cadillo-Quiroz H, Bräuer S, Yashiro E, Sun C, Yavitt J, Zinder S (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8:1428–1440

    Article  CAS  Google Scholar 

  • Cadillo-Quiroz H, Yavitt J, Zinder S, Thies J (2010) Diversity and community structure of archaea inhabiting the rhizoplane of two contrasting plants from an acidic bog. Microb Ecol 59:757–767

    Article  CAS  Google Scholar 

  • Cao M, Gregson K, Marshall S (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32:3293–3299

    Article  CAS  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  Google Scholar 

  • Chen H, Wu N, Wang Y, Gao Y, Peng C (2011) Methane fluxes from alpine wetlands of Zoige plateau in relation to water regime and vegetation under two scales. Water Air Soil Pollut 217:173–183

    Article  CAS  Google Scholar 

  • Chin KJ, Lukow T, Conrad R (1999) Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 65:2341–2349

    CAS  Google Scholar 

  • Christensen TR, Ekberg A, Ström L et al (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30:1414

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Høj L, Rusten M, Haugen LE, Olsen RA, Torsvik VL (2006) Effects of water regime on archaeal community composition in Arctic soils. Environ Microbiol 8:984–996

    Article  Google Scholar 

  • Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog feat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675

    CAS  Google Scholar 

  • Hao Y, Cui X, Wang Y et al (2011) Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige Alpine wetlands of Southwest China. Wetlands 31:413–422

    Article  Google Scholar 

  • Hayden HL, Mele PM, Bouqoure DS et al (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jin H, Wu J, Cheng G, Tomoko N, Sun G (1999) Methane emissions from wetlands on the Qinghai-Tibet Plateau. Chin Sci Bull 44:2283–2286

    Google Scholar 

  • Kemnitz D, Chin KJ, Bodelier P, Conrad R (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6:449–461

    Article  CAS  Google Scholar 

  • Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749

    Article  CAS  Google Scholar 

  • Kim SY, Freeman C, Fenner N, Kang H (2012) Functional and structural responses of bacterial and methanogen communities to 3-year warming incubation in different depths of peat mire. Appl Soil Ecol 57:23–30

    Article  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429

    Article  CAS  Google Scholar 

  • Kotiaho M et al (2010) Methanogen activity in relation to water table level in two boreal fens. Biol Fertil Soils 46:567–575

    Article  CAS  Google Scholar 

  • Kwon MJ, Haraguchi A, Kang H (2013) Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biol Biochem 60:33–44

    Article  CAS  Google Scholar 

  • Liu DY, Ding WX, Jia ZJ, Cai ZC (2011) Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 8:329–338

    Article  CAS  Google Scholar 

  • Lueders T, Friedrich MW (2003) Evaluation of pcr amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69:320–326

    Article  CAS  Google Scholar 

  • Luo Y, Melillo J, Niu S et al (2011) Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob Chang Biol 17:843–854

    Article  Google Scholar 

  • Macrae ML, Devito KJ, Strack M, Waddington JM (2013) Effect of water table drawdown on peatland nutrient dynamics: implications for climate change. Biogeochemistry 112:661–676

    Article  Google Scholar 

  • Mander Ü, Maddison M, Soosaar K, Karabelnik K (2011) The Impact of pulsing hydrology and fluctuating water table on greenhouse gas emissions from constructed wetlands. Wetlands 31:1023–1032

    Article  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86

    Article  CAS  Google Scholar 

  • Metje M, Frenzel P (2005) Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a Northern wetland. Appl Environ Microbiol 71:8191–8200

    Article  CAS  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964

    Article  CAS  Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophys Res Lett 20:587–590

    Article  CAS  Google Scholar 

  • O’Halloran I (1993) in Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL

  • Peltoniemi K, Fritze H, Laiho R (2009) Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biol Biochem 41:1902–1914

    Article  CAS  Google Scholar 

  • Pendall E, Osanai Y, Williams AL, Hovenden MJ (2011) Soil carbon storage under simulated climate change is mediated by plant functional type. Global Chang Biol 17:505–514

    Article  Google Scholar 

  • Roulet NT, Ash R, Moore TR (1992) Low boreal wetlands as a source of atmospheric methane. J Geophys Res-Atmos 97:3739–3749

    Article  CAS  Google Scholar 

  • Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011) Effect of warming and drought on grassland microbial communities. ISME J 5:1692–1700

    Article  CAS  Google Scholar 

  • Stahl DA, Amann RI (1991) Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, UK, pp 205–248

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tian J, Chen H, Dong X, Wang Y (2012a) Relationship between archaeal community structure and vegetation type in a fen on the Qinghai–Tibetan Plateau. Biol Fertil Soils 48:349–356

    Article  Google Scholar 

  • Tian J, Zhu Y, Kang X, Dong X, Li W, Chen H, Wang Y (2012b) Effects of drought on the archaeal community in soil of the Zoige wetlands of the Qinghai–Tibetan plateau. Euro J Soil Biol 52:84–90

    Article  Google Scholar 

  • Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD (2008) Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res-Biogeo 113

  • Urbanová Z, Picek T, Bárta J (2011) Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecol Eng 37:1017–1026

    Article  Google Scholar 

  • Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biochem Cycles 14:745–765

    Article  CAS  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen JQ, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Global Chang Biol 9:141–151

    Article  Google Scholar 

  • White JR, Shannon RD, Weltzin JF, Pastor J, Bridgham SD (2008) Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study. J Geophys Res 113

  • Yang G et al (2014) Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol Biochem 78:83–89

    Article  CAS  Google Scholar 

  • Yrjälä K et al (2011) CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Global Chang Biol 17:1311–1320

    Article  Google Scholar 

  • Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    Article  CAS  Google Scholar 

  • Yu Y, Lee C, Hwang JKS (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  Google Scholar 

  • Zhang G, Tian J, Jiang N, Guo X, Wang Y, Dong X (2008) Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850–1860

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundations of China (No. 41101238) and 100 Talents Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China (No. 31100348)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqing Tian or Huai Chen.

Additional information

Responsible editor: Jizheng He

Jianqing Tian and Chi Shu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 153 kb)

Fig. S2

(DOCX 377 kb)

Fig. S3

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Shu, C., Chen, H. et al. Response of archaeal communities to water regimes under simulated warming and drought conditions in Tibetan Plateau wetlands. J Soils Sediments 15, 179–188 (2015). https://doi.org/10.1007/s11368-014-0978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0978-1

Keywords

Navigation