Frontiers in the microbial processes of ammonia oxidation in soils and sediments

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Two recent discoveries in nitrogen (N) cycling processes, i.e., archaeal ammonia oxidizers and anaerobic ammonia (ammonium) oxidation (anammox), have triggered great interest in studying microbial ammonia oxidation processes. The purpose of this review is to highlight recent progress in ammonia oxidation processes in soils and sediments and to propose future research activities in this topic.

Results and discussion

Aerobic ammonia oxidation and anammox processes are linked through the production and consumption of nitrite, respectively, thereby removing the reactive N (NH4 +, NO2 , NO3 ) from soil and sediment ecosystems. Ammonia-oxidizing microorganisms are widely distributed in soils and sediments, and increasing evidence suggests that ammonia-oxidizing archaea and bacteria are functionally dominant in the ammonia oxidation of acid soils and other soils, respectively. The widespread occurrence and great variation in the abundance of anammox bacteria indicate their heterogeneous distribution and niche differentiation. Therefore, the worldwide distribution of both microbial groups in nature has stimulated researchers to investigate the physiology and metabolism of related groups, as well as appraising their contribution to N cycling.

Conclusions

We summarized the current progress and provided future perspectives in the microbiology of aerobic and anaerobic ammonia oxidation in soils and sediments. With increasing concern and interest in soil and sediment ammonia oxidation processes, studies in the microbial mechanisms underlying nitrification and anammox, as well as their interactions, are essential for understanding their contribution to the loss of N either through nitrate leaching or N-related gas emissions.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fert Soils 41:379–388

    CAS  Article  Google Scholar 

  2. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    CAS  Article  Google Scholar 

  3. Cao HL, Auguet JC, Gu JD (2013) Global ecological pattern of ammonia-oxidizing Archaea. PLOS One 8:e52853

    CAS  Article  Google Scholar 

  4. Chen X, Zhang LM, Shen JP, Xu ZH, He JZ (2010) Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. J Soils Sediments 10:1510–1516

    CAS  Article  Google Scholar 

  5. Dalsgaard T, Thamdrup B (2002) Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol 68:3802–3808

    CAS  Article  Google Scholar 

  6. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608

    CAS  Article  Google Scholar 

  7. den Camp HJMO, Kartal B, Guven D, van Niftrik LAMP, Haaijer SCM, van der Star WRL, van de Pas-Schoonen KT, Cabezas A, Ying Z, Schmid MC, Kuypers MMM, van de Vossenberg J, Harhangi HR, Picioreanu C, van Loosdrecht MCM, Kuenen JG, Strous M, Jetten MSM (2006) Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochem Soc T 34:174–178

    Article  Google Scholar 

  8. Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    CAS  Article  Google Scholar 

  9. Fernandez-Guerra A, Casamayor EO (2012) Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers. PLOS One 7:e47330

    CAS  Article  Google Scholar 

  10. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    CAS  Article  Google Scholar 

  11. Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 108:21206–21211

    CAS  Article  Google Scholar 

  12. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLOS Biol 4:520–536

    CAS  Article  Google Scholar 

  13. He JZ, Shen JP, Zhang LM, Zhu YM, Zheng YG, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    CAS  Article  Google Scholar 

  14. He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    CAS  Article  Google Scholar 

  15. Herrmann M, Saunders AM, Schramm A (2009) Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 75:3127–3136

    CAS  Article  Google Scholar 

  16. Hu BL, Rush D, van der Biezen E, Zheng P, van Mullekom M, Schouten S, Damste JSS, Smolders AJP, Jetten MSM, Kartal B (2011) New anaerobic, ammonium-oxidizing community enriched from peat soil. Appl Environ Microbiol 77:966–971

    CAS  Article  Google Scholar 

  17. Hu HW, Zhang LM, Dai Y, Di HJ, He JZ (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments 13:1439–1449

    Article  Google Scholar 

  18. Hu HW, Xu ZH, He JZ (2014) Ammonia-oxidizing archaea play a predominant role in acid soil nitrification. Adv Agron 125:261–302

    Google Scholar 

  19. Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454

    Article  Google Scholar 

  20. Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    CAS  Article  Google Scholar 

  21. Kartal B, van Niftrik L, Keltjens JT, den Camp HJMO, Jetten MSM (2012) Anammox-growth physiology, cell biology, and metabolism. Adv Microb Physiol 60:211–262

    CAS  Article  Google Scholar 

  22. Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT (2013) How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev 37:428–461

    CAS  Article  Google Scholar 

  23. Kool DM, Wrage N, Zechmeister-Boltenstern S, Pfeffer M, Brus D, Oenema O, Van Groenigen JW (2010) Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method. Eur J Soil Sci 61:759–772

    CAS  Article  Google Scholar 

  24. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    CAS  Article  Google Scholar 

  25. Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326

    CAS  Article  Google Scholar 

  26. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    CAS  Article  Google Scholar 

  27. Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci U S A 104:7104–7109

    CAS  Article  Google Scholar 

  28. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci U S A 108:15892–15897

    CAS  Article  Google Scholar 

  29. Lehtovirta-Morley LE, Verhamme DT, Nicol GW, Prosser JI (2013) Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biol Biochem 62:129–133

    CAS  Article  Google Scholar 

  30. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  Article  Google Scholar 

  31. Levicnik-Hofferle S, Nicol GW, Ausec L, Mandic-Mulec I, Prosser JI (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123

    CAS  Article  Google Scholar 

  32. Liu S, Shen LD, Lou LP, Tian GM, Zheng P, Hu BL (2013) Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China. Appl Environ Microb 79:4065–4071

    CAS  Article  Google Scholar 

  33. Lu L, Jia ZJ (2013) Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol 15:1795–1809

    CAS  Article  Google Scholar 

  34. Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16:177–183

    CAS  Article  Google Scholar 

  35. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    CAS  Article  Google Scholar 

  36. Pett-Ridge J, Petersen DG, Nuccio E, Firestone MK (2013) Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil. FEMS Microbiol Ecol 85:179–194

    Article  Google Scholar 

  37. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    CAS  Article  Google Scholar 

  38. Sahan E, Muyzer G (2008) Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol 64:175–186

    CAS  Article  Google Scholar 

  39. Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and Archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079

    CAS  Article  Google Scholar 

  40. Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing Archaea. Science 333:1282–1285

    CAS  Article  Google Scholar 

  41. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, den Camp HJMO, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:1476–1484

    CAS  Article  Google Scholar 

  42. Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    CAS  Article  Google Scholar 

  43. Shen JP, Zhang LM, Di HJ, He JZ (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3:296

    CAS  Google Scholar 

  44. Shen TL, Stieglmeier M, Dai JL, Urich T, Schleper C (2013) Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 344:121–129

    CAS  Article  Google Scholar 

  45. Shen XY, Zhang LM, Shen JP, Li LH, Yuan CL, He JZ (2011) Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. J Soils Sediments 11:1243–1252

    CAS  Article  Google Scholar 

  46. Stahl DA, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing Archaea. Annu Rev Microbiol 66:83–101

    CAS  Article  Google Scholar 

  47. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    CAS  Article  Google Scholar 

  48. Strous M, Pelletier E, Mangenot S et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  Google Scholar 

  49. Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ, Myrold DD, Sayavedra-Soto L, Bottomley PJ (2013) Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing Thaumarchaea and bacteria. Appl Environ Microbiol 79:6544–6551

    Google Scholar 

  50. Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A 108:8420–8425

    CAS  Article  Google Scholar 

  51. Walker CB, de la Torre JR, Klotz MG et al (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Crenarchaea. Proc Natl Acad Sci U S A 107:8818–8823

    CAS  Article  Google Scholar 

  52. Wang J, Gu JD (2013) Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl Microbiol Biotechnol 97:1785–1798

    CAS  Article  Google Scholar 

  53. Wang SY, Wang Y, Feng XJ, Zhai LM, Zhu GB (2011) Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Appl Microbiol Biotechnol 90:779–787

    CAS  Article  Google Scholar 

  54. Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    CAS  Article  Google Scholar 

  55. Wrage N, Velthof GL, Laanbroek HJ, Oenema O (2004) Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biol Biochem 36:229–236

    CAS  Article  Google Scholar 

  56. Yao HY, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microbiol 15:2545–2556

    CAS  Article  Google Scholar 

  57. Ying JY, Zhang LM, He JZ (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2:304–312

    CAS  Article  Google Scholar 

  58. Ying JY, Zhang LM, Wei WX, He JZ (2013) Effects of land utilization patterns on soil microbial communities in an acid red soil based on DNA and PLFA analyses. J Soils Sediments 13:1223–1231

    CAS  Article  Google Scholar 

  59. Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    CAS  Article  Google Scholar 

  60. Zhu GB, Wang SY, Feng XJ, Fan GN, Jetten MSM, Yin CQ (2011) Anammox bacterial abundance, biodiversity and activity in a constructed wetland. Environ Sci Technol 45:9951–9958

    CAS  Article  Google Scholar 

  61. Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci U S A 110:6328–6333

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (41025004, 41020114001, and 41230857).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji-Zheng He.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, JP., Xu, Z. & He, JZ. Frontiers in the microbial processes of ammonia oxidation in soils and sediments. J Soils Sediments 14, 1023–1029 (2014). https://doi.org/10.1007/s11368-014-0872-x

Download citation

Keywords

  • Aerobic ammonia oxidation
  • Anaerobic ammonium oxidation (anammox)
  • Microbial processes
  • Nitrogen management