Skip to main content
Log in

Inter-population variation on the accumulation and translocation of potentially harmful chemical elements in Cistus ladanifer L. from Brancanes, Caveira, Chança, Lousal, Neves Corvo and São Domingos mines in the Portuguese Iberian Pyrite Belt

  • POTENTIALLY HARMFUL ELEMENTS IN SOIL-PLANT INTERACTIONS
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to compare the variation on the accumulation and translocation of potentially harmful chemical elements and nutrients (As, Ca, Cu, Fe, K, Mg, Mn, Ni, Pb and Zn) in Cistus ladanifer L. belonging to populations growing in different mine areas from the Portuguese Iberian Pyrite Belt (Brancanes, Caveira, Chança, Lousal, Neves Corvo, São Domingos). These mines are abandoned (except Neves Corvo that is still operating) and have different contamination levels.

Materials and methods

Composite samples of soils (n = 31), developed on different mine wastes and/or host rock, and C. ladanifer plants (roots and shoots) were collected in the mine areas. Soils were characterized for pH, NPK and organic C, by classical methodologies. Soils (total fraction—four acid digestion, and available fraction—extracted with aqueous solution of diluted organic acids, simulating rizosphere conditions) and plants (ashing followed by acid digestion) elemental concentrations were determined by ICP. Soil–plant transfer and translocation coefficients were calculated. Principal components analysis in both ways, the classical method and a second approach with adaptations used mostly in multivariate statistical processes control data, were done in order to compare the plants populations.

Results and discussion

Soils had large heterogeneity in their characteristics. Caveira, Lousal, Neves Corvo and São Domingos soils showed the highest total concentrations of As, Cu, Pb and Zn. Independently of the mine, available fractions of elements were low. Intra- and inter-population variations in accumulation and translocation of elements were evaluated. Plants were not accumulators of the majority of the analysed elements. Nutrients were mainly translocated from roots to shoots, while trace elements were stored in roots (except in Neves Corvo for As and Pb, and São Domingos for As). Elements concentrations in plant populations from Lousal, Chança and São Domingos did not present much variation. Brancanes soils and plants presented strong differences compared to other areas.

Conclusions

Cistus ladanifer plants are able to survive in mining areas with polymetallic contamination at different elements concentrations in total and available fraction. This species presented variations inter- and intra-populations in accumulation and translocation of chemical elements; however, all studied populations, except Brancanes, can belong to the same population cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu MM, Magalhães MCF (2009) Phytostabilization of soils in mining areas. Case studies from Portugal. In: Aachen L, Eichmann P (eds) Soil remediation. Nova Science, New York, pp 297–344

    Google Scholar 

  • Abreu MM, Santos ES, Anjos C, Magalhães MCF, Nabais C (2009) Lead uptake capacity of Cistus plants growing in mining areas. Rev Ciênc Agrár 31(1):170–181

    Google Scholar 

  • Abreu MM, Santos ES, Fernandes E, Batista MJ, Ferreira M (2011) Accumulation and translocation of trace elements in Cistus ladanifer L. from IPB Portuguese mining areas. Rev Ciênc Agrár 34(2):44–56, http://www.scielo.gpeari.mctes.pt/pdf/rca/v34n2/v34n2a05.pdf. Accessed June 2013

    Google Scholar 

  • Abreu MM, Santos ES, Fernandes E, Magalhães MCF (2012a) Trace elements tolerance, accumulation and translocation in Cistus populifolius, Cistus salviifolius and their hybrid growing in polymetallic contaminated mine areas. J Geochem Explor 123:52–60

    Article  CAS  Google Scholar 

  • Abreu MM, Santos ES, Ferreira M, Magalhães MCF (2012b) Cistus salviifolius a promising species for mine wastes remediation. J Geochem Explor 113:86–93

    Article  CAS  Google Scholar 

  • Activation Laboratories (2013) Code 1H – Au + 48. http://www.actlabs.com/page.aspx?page=506&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes. Accessed June 2013

  • Activation Laboratories (2013) Code 6–Hydrogeochemistry–ICP/MS. http://www.actlabs.com/page.aspx?page=544&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes. Accessed June 2013

  • Activation Laboratories (2013) 2D–Vegetation Ash–ICP/MS. http://www.actlabs.com/page.aspx?page=538&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes. Accessed June 2013

  • Alvarenga PM, Araújo MF, Silva JAL (2004) Elemental uptake and root-leaves transfer in Cistus ladanifer L. growing in a contaminated pyrite mining area (Aljustrel-Portugal). Water Air Soil Pollut 152:81–96

    Article  CAS  Google Scholar 

  • Álvarez-Valero AM, Pérez-López R, Matos J, Capitán MA, Nieto JM, Sáez R, Delgado J, Caraballo M (2008) Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization. Environ Geol 55(8):1797–1809

    Article  Google Scholar 

  • Batista MJ, Abreu MM, Serrano Pinto M (2004) Comportamento do Arsénio (III) e (V) em Dois Litossolos e em Estevas na Área Mineira de Neves Corvo. Rev Ciênc Agrár 37(1):291–300

    Google Scholar 

  • Batista MJ, Abreu MM, Serrano Pinto M (2007) Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal. J Geochem Explor 92:159–176

    Article  CAS  Google Scholar 

  • Batista MJ, Gonzalez-Fernandez O, Abreu MM, Carvalho L (2009) Chemical elements variation in leaves with different development stages of Cistus plants from S. Domingos mine area, South Portugal. Proc VII Congr Ibérico X Congr Nac Geoquím 407-415. http://repositorio.lneg.pt/bitstream/10400.9/740/1/33810.pdf. Accessed June 2013

  • CCME—Canada Council of Ministers of the Environment (2007) Canadian soil quality guidelines for the protection of environmental and human health: Summary tables (updated September, 2007). CCME, Winnipeg

    Google Scholar 

  • Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian pyrite belt, SW Spain. Water Air Soil Pollut 182:245–261

    Article  CAS  Google Scholar 

  • de la Fuente V, Rufo L, Rodríguez N, Amils R, Zuluaga J (2010) Metal accumulation screening of the Río Tinto Flora (Huelva, Spain). Biol Trace Elem Res 134:318–341

    Article  CAS  Google Scholar 

  • Farago M, Cole M, Xiao XE, Vaz MC (1992) Preliminary assessment of metal bioavailability to plants in the Neves Corvo area of Portugal. Chem Speciat Bioavailab 4(1):19B27

    Google Scholar 

  • Feng MH, Shan XQ, Zhang SZ, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137:231–240

    Article  CAS  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72

    Article  CAS  Google Scholar 

  • Hill T, Lewicki P (2007) STATISTICS: Methods and Applications. StatSoft, Tulsa

    Google Scholar 

  • INIA–LQARS (2000) Manual de Fertilização das culturas. Laboratório Químico Agrícola Rebelo da Silva (Ed.), Lisboa

  • INMG (1990) O clima de Portugal. Normais climatológicas da região de “Alentejo e Algarve” correspondentes a 1951–1980. Lisboa, Instituto Nacional de Meteorologia e Geofísica, 98 p. (Fascículo XLIX, Vol 4 – 4ª Região).

  • IUSS Working Group WRB (2007) World reference base for soil resources 2006 (first update 2007). World Soil Resources Reports No. 103, Rome, FAO.

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Kidd PS, Díez J, Monterroso Martínez C (2004) Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. subsp. ladanifer. Plant Soil 258:189–205

    Article  CAS  Google Scholar 

  • Lázaro JD, Kidd PS, Martínez CM (2006) A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Sci Total Environ 354:265–277

    Article  Google Scholar 

  • Matos JX, Martins LP (2006a) Reabilitação Ambiental de Áreas Mineiras do Sector Português da Faixa Piritosa Ibérica: Estado da Arte e Prespectivas Futuras. Bol Geol Min Esp 117:289–304

    Google Scholar 

  • Matos JX, Martins LP (2006b) Iberian Pyrite Belt Mining Region. Regional study of the Portuguese Sector. Noth East South West INTERREG IIIC. European Network of Mining Regions. INETI, Lisboa

    Google Scholar 

  • Matos JX, Martins LP, Oliveira JT, Pereira Z, Batista MJ, Quental L (2008) Rota da pirite no sector português da Faixa Piritosa Ibérica, desafios para um desenvolvimento sustentado do turismo geológico e mineiro. In: Paul Carrion (Ed.), Rutas Minerales en Iberoamérica. Projecto RUMYS, programa CYTED (136–155). Esc. Sup. Politécnica del Litoral, Guayaquil, Equador.

  • Murciego AM, Sánchez AG, González MAR, Gil EP, Gordillo CT, Fernández JC, Triguero TB (2007) Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ Pollut 145:15–21

    Article  CAS  Google Scholar 

  • Pérez-López R, Álvarez-Valero AM, Nieto JM, Sáez R, Matos JX (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Appl Geochem 23:3452–3463

    Article  Google Scholar 

  • Póvoas I, Barral MF (1992) Métodos de análise de solos. Comunicações do Instituto de Investigação Científica Tropical. Serie Ciências Agrárias 10, Lisboa

  • Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Expl 85:99–107

    Article  CAS  Google Scholar 

  • Quental L, Bourguignon A, Sousa AJ, Batista MJ, Brito MG, Tavares T, Abreu MM, Vairinho M, Cottard F (2002) MINEO Southern Europe environment test site. Contamination impact mapping and modelling—Final Report. Assessing and monitoring the environmental impact of mining activities in Europe using advanced Earth Observation Techniques (MINEO) 5yth FP-IST-1999–10337

  • Reglero MM, Monsalve-González L, Taggart MA, Mateo R (2008) Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci Total Environ 406:287–297

    Article  CAS  Google Scholar 

  • Risvic H (2007) Principal component analysis (PCA) & NIPALS algorithm. http://folk.uio.no/henninri/pca_module/pca_nipals.pdf

  • Santos ES, Abreu MM, Nabais C, Saraiva J (2009) Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area. Ecotoxicology 18:860–868

    Article  CAS  Google Scholar 

  • Santos ES, Abreu MM, Nabais C, Magalhães MCF (2012) Trace element distribution in soils developed on gossan mine wastes and Cistus ladanifer L. tolerance and bioaccumulation. J Geochem Explor 123:45–51

    Article  CAS  Google Scholar 

  • Santos ES, Nabais C, Abreu MM (2013) Adaptabilidade ecofisiológica de diferentes populações de Cistus ladanifer L. do sul de Portugal. STUDIA—Scientiæ Rerum Diffusio: Suplemento Temático IV Seminário Luso-brasileiro em Ciências do Ambiente e Empresariais, 6 pp

  • Srivastava PC, Gupta UC (1996) Trace elements in crop production. Science, Lebanon

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank José Correia for technical support and the FCT-Portuguese Foundation for Science and Technology for financial research support of CICECO—Centro de Investigação em Materiais Cerâmicos e Compósitos (Program Pest-C/CTM/LA0011/2011) and UIQA—Unidade de Investigação Química Ambiental, and PhD grant (SFRH/BD/80198/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Manuela Abreu.

Additional information

Responsible editor: Jaume Bech

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, E.S., Abreu, M.M., Batista, M.J. et al. Inter-population variation on the accumulation and translocation of potentially harmful chemical elements in Cistus ladanifer L. from Brancanes, Caveira, Chança, Lousal, Neves Corvo and São Domingos mines in the Portuguese Iberian Pyrite Belt. J Soils Sediments 14, 758–772 (2014). https://doi.org/10.1007/s11368-014-0852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0852-1

Keywords

Navigation