Journal of Soils and Sediments

, Volume 14, Issue 3, pp 525–537 | Cite as

Use of geophysical methods for the study of sandy soils under Campinarana at the National Park of Viruá, Roraima state, Brazilian Amazonia

  • Bruno Araujo Furtado de Mendonça
  • Elpídio Inácio Fernandes Filho
  • Carlos Ernesto Gonçalves Reynaud Schaefer
  • Anôr Fiorini de Carvalho
  • José Frutuoso do ValeJr.
  • Guilherme Resende Corrêa
SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE

Abstract

Purpose

The vegetation of the Campinaranas occurs in humid areas with hydromorphic sandy soils at the Amazon region. Thus, the determination and in situ monitoring of moisture content in Campinarana soils, besides the detection of subsurface layers are key measures for studying these soil–vegetation systems. Also, the application of ground penetrating radar (GPR) in deep sandy sedimentary sequence of Amazonia is a promising tool to enhance the knowledge on depositional and soil formation features.

Materials and methods

We studied representative soils of the Campinaranas at the National Park of Viruá, state of Roraima (Brazilian Amazonia), through the use of geophysical methods (soil moisture sensors and GPR). The study was applied in four sandy soils. Besides chemical and physical analysis of soils, soil moisture sensors were installed for monitoring during an entire hydrological year (2010/2011), and performed the calibration of sensors , coupled with imaging of the soil along transects with GPR.

Results and discussion

As a result of calibration of the soil moisture sensors we obtained a general equation with an R2 greater than 0.9. There is an influence of soil moisture content and soil temperature in the distribution of vegetation types in Campinaranas. The use of GPR identified some determinants characteristics in these soils for the differentiating the Campinaranas, represented by spodic and C horizons.

Conclusions

The spodic horizons in soils under Forest Campinarana provided potential errors in the determination of soil moisture, requiring calibration data for the precise use of this device. The investigation of the soil through the GPR showed interesting results, which allowed continuous visualization of the main soil horizons along transects in the phytophysiognomies of Campinaranas.

Keywords

Campinarana GPR Moisture sensor calibration Sandy soils Soil moisture monitoring 

References

  1. Alfaro Soto MA, Kumayama DM, Chang HK (2007) Calibração de um reflectômetro para estudos do fluxo de água em solo não saturado. Geophys J R Astron Soc 26(4):357–368Google Scholar
  2. ANA (2011) Agência Nacional de Águas, Sistemas de Informações Hidrológicas, Estação meteorológica de Caracaraí. Available, http://www.ana.gov.br. Accessed 20 Oct 2011
  3. Anderson AB (1978) Aspectos florísticos e fitogeográficos de Campinas e Campinaranas, na Amazônia Central, Manaus. Dissertation, Instituto Nacional de Pesquisas da AmazôniaGoogle Scholar
  4. Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13(3):199–210CrossRefGoogle Scholar
  5. Anderson AB, Prance GT, Albuquerque BWP (1975) Estudos sobre as vegetações de Campinas Amazônica III: a vegetação lenhosa da Campina da Reserva Biológica INPA—SUFRAMA (Manaus-Caracaraí, km 62). Acta Amazon 5(3):225–246Google Scholar
  6. Annan AP (2009) Electromagnetic principles of ground penetrating radar. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier Science, Oxford, pp. 3–40Google Scholar
  7. Annan AP, Cosway SW, Redman JD (1991) Water table detection with ground penetrating radar. In: International Congress of Society of Exploration Geophysical, 61, 1991, Houston. Expanded Abstracts, Houston: SEG, pp 494–496Google Scholar
  8. Brasil (1975) Projeto RADAMBRASIL, Folha NA. 20 Boa Vista e parte das Folhas NA −21 Tumuqumaque, NB – 20 Roraima e NB – 21. Ministério das Minas e Energia, Rio de Janeiro (v8)Google Scholar
  9. Brasil (1975) Projeto RADAMBRASIL, Folha NA. 21 Tumucumaque e parte da Folha NB. 21; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Ministério das Minas e Energia, Rio de Janeiro (v9)Google Scholar
  10. Brasil (1976) Projeto RADAMBRASIL, Folha NA. 19 Pico da Neblina; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Ministério das Minas e Energia, Rio de Janeiro (v11)Google Scholar
  11. Brasil (1977) Projeto RADAMBRASIL, Folhas SB/SC. 18 Javari/Contamana; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Ministério das Minas e Energia, Rio de Janeiro (v13)Google Scholar
  12. Brasil (1977) Projeto RADAMBRASIL, Folha SA. 19 Içá; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Ministério das Minas e Energia, Rio de Janeiro (v14)Google Scholar
  13. Brasil (1978) Projeto RADAMBRASIL, Folha SA. 20 Manaus; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Ministério das Minas e Energia, Rio de Janeiro (v18)Google Scholar
  14. Burgoa B, Mansell RS, Sawka GJ, Nkedi-Kizza P, Capece J, Campbell K (1991) Spatial variability of depth to Bh horizon in Florida Haplaquods using ground-penetrating radar. Soil Crop Sci Soc Fl 50:125–130Google Scholar
  15. Campbell Scientific (2006) CS616 and CS625 Water content reflectometers. Instruction manual revision: 8/06. Campbell Scientific Inc, North LoganGoogle Scholar
  16. Carneiro Filho A, Tatumi SH, Yee M (2003) Dunas Fósseis na Amazônia. Ciência Hoje-SBPC 191:24–29Google Scholar
  17. Collins ME, Doolittle JA (1987) Using ground-penetrating radar to study soil microvariability. Soil Sci Soc Am J 51:491–493CrossRefGoogle Scholar
  18. CPRM (2000) Programa Levantamentos Geológicos Básicos do Brasil, Projeto de Mapeamento Geológico / Metalogenético Sistemático Caracaraí: Folhas NA.20-Z-B e NA.20-Z-D inteiras e parte das folhas NA.20-Z-A, NA.20-Z-C, NA.21-Y-C e NA.21-Y-A. Companhia de Pesquisa de Recursos Minerais, BrasíliaGoogle Scholar
  19. de Mendonça BAF, Fernandes Filho EI, Schaefer CEGR, Simas FNB, do Vale Júnior JF, Lisboa BAR, De Mendonça JGF (2013) Solos e Geoambientes do Parque Nacional do Viruá, Roraima: visão integrada da paisagem e serviço ambiental. Revista Ciência Florestal, Santa Maria 23(2):429–444Google Scholar
  20. Donagemma GK, Ruiz HA, Alvarez VH, Ker JC, Fontes MPF (2008) Fósforo Remanescente em Argila e Silte Retirados de Latossolos após Pré-Tratamentos na Análise Textural. R Bras Ci Solo 32:1785–1791CrossRefGoogle Scholar
  21. Doolittle JA (1987) Using ground-penetrating radar to increase the quality and efficiency of soil surveys. Special Publication, Soil Survey Techniques. Soil Sci Soc Am J 20:11–32Google Scholar
  22. Doolittle JA, Butnor JR (2009) Soils, peatlands, and biomonitoring. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier Science, Oxford, pp. 179–202Google Scholar
  23. Doolittle J, Daigle J, Kelly J, Tuttle W (2005) Using GPR to characterize plinthite and ironstone layers in Ultisols. Soil Surv Horiz 46(4):179–184Google Scholar
  24. Dubroeucq D, Blancaneaux P (1987) Les podzols du haut rio Negro, region de Marao, Venezuela. Environnement et relations lithologiques. In: Righi D, Chauvel A (eds) Podzols et podzolisation. INRA, Paris, pp 37–52Google Scholar
  25. Dubroeucq D, Volkoff B (1998) From Oxisols to Spodosols and Histosols: evolution of the soil mantles in the rio Negro basin (Amazonia). Catena 32:245–280CrossRefGoogle Scholar
  26. Ducke A, Black GA (1954) Notas sobre a fitogeografia da Amazônia brasileira. Boletim Técnico do Instituto Agronômico do Norte, Belém 29:1–62Google Scholar
  27. Embrapa (1997) Empresa Brasileira de Pesquisa Agropecuária. Serviço Nacional de Levantamento e Conservação de Solos. Manual de métodos de análises de solo (2ªed) Rio de JaneiroGoogle Scholar
  28. Evett S, Heng LK (2008) Conventional time domain reflectometry systems. In: Cepuder P (ed) Field estimation of soil water content: a practical guide to methods, instrumentation and sensor technology. Training Course Series No. 30. International Atomic Energy Agency, ViennaGoogle Scholar
  29. Ferreira CAC (1997) Variação Florística e Fisionômica da Vegetação de Transição Campina, Campinara e Floresta de Terra Firme. Dissertation, Universidade Federal Rural de PernambucoGoogle Scholar
  30. Gong Y, Cao Q, Sun Z (2003) The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrol Process 17:3601–3614CrossRefGoogle Scholar
  31. Huisman JA, Sperl C, Bouten W, Verstraten JM (2001) Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar. J Hydrol 245:48–58CrossRefGoogle Scholar
  32. Huisman JA, Snepvangers JJJC, Bouten W, Heuvelink GBM (2002) Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. J Hydrol 269:194–207CrossRefGoogle Scholar
  33. Jol HM (2009) Ground penetrating radar: theory and application. Elsevier Science, OxfordGoogle Scholar
  34. Lukanu G, Savage MJ (2006) Calibration of a frequency-domain reflectometer for determining soil-water content in a clay loam soil. Water SA 32(1)Google Scholar
  35. Lunt IA, Hubbardb SS, Rubin Y (2005) Soil moisture content estimation using ground-penetrating radar reflection data. J Hydrol 307:254–269CrossRefGoogle Scholar
  36. McNeill JD (1980) Electrical conductivity of soils and rock. Technical Note TN-5, Geonics Limited, Mississauga, OntarioGoogle Scholar
  37. Mokma DL, Schaetzl RJ, Doolittle JA, Johnson EP (1990) Ground-penetrating radar study of ortstein continuity in some Michigan Haplaquods. Soil Sci Soc Am J 54:936–938CrossRefGoogle Scholar
  38. Noborio K (2001) Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agr 31:213–237CrossRefGoogle Scholar
  39. Novais RF, Smyth TJ (1999) Fósforo em solo e planta em condições tropicais. Universidade Federal de Viçosa, ViçosaGoogle Scholar
  40. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  41. Prance GT (1996) Islands in Amazonia. Phil Trans R Soc London 351(1341):823–833CrossRefGoogle Scholar
  42. Prance GT, Schubart HOR (1978) Nota preliminar sobre a origem das campinas abertas de areia branca do rio Negro. Acta Amazon 3(4):567–550Google Scholar
  43. Reichardt K, dos Santos A, Nascimento Filho VF, Bacchi OOS (1975) Movimento de água subterrânea em ecossistema Campina Amazônica. Acta Amazon 5(3):287–290Google Scholar
  44. Richards PW (1952) The tropical rain forest. Cambridge Universtiy PressGoogle Scholar
  45. Rodrigues W (1961) Aspectos Fitossociológicos das Caatingas do Rio Negro. Boletim do Museu Paraense Emílio Goeldi. Botânica. Belém. 15Google Scholar
  46. Ruelle P, Laurent JP et al (2008) CS616 (CS615) Water content reflectometer. In: Cepuder P (ed) Field Estimation of Soil Water Content: a practical guide to methods, instrumentation and sensor technology, Training Course Series No. 30. International Atomic Energy Agency, ViennaGoogle Scholar
  47. Ruiz HA (2005) Incremento da exatidão da análise granulométrica do solo por meio da coleta da suspensão (silte + argila). Revista Brasileira de Ciência do Solo 29:297–300CrossRefGoogle Scholar
  48. Santos JOS, Nelson BW (1995) Os campos de dunas do Pantanal Setentrional. In: Congresso Latino-Americano, 8, CaracasGoogle Scholar
  49. Santos RD, Lemos RC, Santos HG dos, Ker JC, Anjos LHC (2005) Manual de descrição e coleta de solo no campo (5ªed) (revisada e ampliada) Viçosa, Sociedade Brasileira de Ciência de Solo.Google Scholar
  50. Siddiqui SI, Drnevich VP (1995) Use of Time Domain Reflectometry for Determination of Water Content an Density of Soil. Joint Transportation Research Program, 219Google Scholar
  51. Sioli H, Klinge H (1962) Solos, tipos de vegetação e águas da Amazônia. Boletim do Museu Paraense Emílio Goeldi. Nova Série 1Google Scholar
  52. Smith DG, Jol HM (1995) Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in quaternary sediments. J Appl Geophys 33:93–100CrossRefGoogle Scholar
  53. Soil Survey Staff (1999) Keys to soil taxonomy. 6th edn, Washington, DCGoogle Scholar
  54. Sombroek WG (1966) Amazon soils: a reconnaissance of the soils of the Brazilian Amazon valley. Pudoc, WageningenGoogle Scholar
  55. Souza CF, Folegatti MV, Matsura EE, Or D (2006) Calibração da Reflectometria no Domínio do Tempo (TDR) para a Estimativa da Concentração da Solução no Solo. Engenharia Agrícola, Jaboticabal 26(1):282–291CrossRefGoogle Scholar
  56. Stangl R, Buchanm GD, Loiskandl W (2009) Field use and calibration of a TDR-based probe for monitoring water content in a high-clay landslide soil in Austria. Geoderma 150:23–31CrossRefGoogle Scholar
  57. Tommaselli JTG, Bacchi OOS (2001) Calibração de um equipamento de TDR para medida de umidade de solos. Pesquisa Agropecuária Brasileira, Brasília 36(9):1145–1154CrossRefGoogle Scholar
  58. Ucha JM, Botelho M, Vilas Boas GS, Ribeiro LP, Santana PS (2002) Uso do Radar Penetrante no Solo (GPR) na investigação dos solos dos Tabuleiros Costeiros no litoral Norte. R Bras Ci Solo 26:373–380Google Scholar
  59. Van Overmeeren RA, Sariowanm SV, Gehrels JC (1997) Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites. J Hydrol 197:316–338CrossRefGoogle Scholar
  60. Veloso HP, Rangel Filho AL, Alves Lima (1991) Classificação da Vegetação Brasileira, adaptada a um Sistema Universal. Ministério da Economia, Fazenda e Planejamento, Fundação Instituto Brasileiro de Geografia e Estatística, IBGEGoogle Scholar
  61. Weiler KW, Steenhuis TS, Boll J, Kung KJS (1998) Comparison of ground penetrating radar and time domain reflectometry as soil water sensors. Soil Sci Soc Am J 62:1237–1239CrossRefGoogle Scholar
  62. Yeoh N, Walker J, Young R, Rüdiger C, Smith A, Ellett K, Pipunic R, Western A (2008) Calibration of the Murrumbidgee Monitoring Network: CS616 soil moisture sensors. Department of Civil and Environmental. The University of Melbourne, EngineeringGoogle Scholar
  63. Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Science Plant Anal 19(13):1467–1476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bruno Araujo Furtado de Mendonça
    • 1
  • Elpídio Inácio Fernandes Filho
    • 1
  • Carlos Ernesto Gonçalves Reynaud Schaefer
    • 1
  • Anôr Fiorini de Carvalho
    • 1
  • José Frutuoso do ValeJr.
    • 2
  • Guilherme Resende Corrêa
    • 3
  1. 1.Soil DepartmentFederal University of ViçosaViçosaBrazil
  2. 2.Soil and Agricultural Engineering DepartmentFederal University of RoraimaBoa VistaBrazil
  3. 3.Biodiversity and Forest InstituteFederal University of West of ParáSantarémBrazil

Personalised recommendations