Skip to main content
Log in

Mechanisms of phosphate retention by calcite: effects of magnesium and pH

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Sorption and precipitation of phosphate are important processes in controlling fate of phosphorus (P) in P-fertilized soils, especially those affected by magnesium (Mg) ions.

Materials and methods

The interaction between Mg(II) (0.42 and 8.33 mM) ions and phosphate (0.32 and 6.45 mM) at the calcite–water interface were investigated with various pH values from 6.0 to 12.0, using a combination of sorption envelopes, Fourier transform infrared spectroscopy, and X-ray diffraction.

Results and discussion

Amorphous calcium phosphate, dibasic calcium phosphate dihydrate, and hydroxyapatite are formed at high phosphate concentration (6.45 mM) and high pH (>8.0). The presence of low Mg(II) ion level (0.42 mM) had little effect on phosphate sorption. When Mg(II) ions increased to 8.33 mM, phosphate retention was inhibited in the weak acid condition since incorporation of Mg(II) ions kinetically hinders precipitation resulting in greater solubility of calcium phosphate while high pH favors Mg adsorption to provide more =Mg sites and OH functional groups on the surface of calcite, which enhanced the formation of Mg–P phases. The likely mechanism is attributed to the different surface terminations of calcite sorbed by phosphate at pH < 8.0 and pH > 8.0 in the presence of Mg(II) ions.

Conclusions

Our experimental results suggested that soil pH, initial concentration of phosphate, and the presence of Mg(II) ions and calcite play an important role to affect the fate of phosphate in P-fertilized soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez R, Evans LA, Milham PJ, Wilson MA (2004) Effects of humic material on the precipitation of calcium phosphate. Geoderma 118:245–260

    Article  CAS  Google Scholar 

  • Arai Y, Sparks DL (2001) ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. J Colloid Interface Sci 241:317–326

    Article  CAS  Google Scholar 

  • Arvidson RS, Collier M, Davis KJ, Vinson MD, Amonette JE, Luttge A (2006) Magnesium inhibition of calcite dissolution kinetics. Geochim Cosmochim Acta 70:583–594

    Article  CAS  Google Scholar 

  • Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE (2003) Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J Environ Qual 32:1809–1819

    Article  CAS  Google Scholar 

  • Ben-Nissan B, Chai C, Evans L (1995) Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic apatites. In: Wise DL et al (eds) Encyclopedic handbook of biomaterials and bioengineering: part B. Applications, Marcel Dekker, New York, USA, pp 191–221

    Google Scholar 

  • Bertoluzza A, Bottura G, Taddei P, Tinti A (1996) Vibrational spectra of controlled-structure hydroxyapatite coatings obtained by the polymeric route. J Raman Spectrosc 27:759–764

    Article  CAS  Google Scholar 

  • Berzina-Cimdina L, Borodajenko N (2012) Research of calcium phosphates using Fourier transform infrared spectroscopy. In: Theophile T (ed) Infrared spectroscopy–materials science. Engineering and Technology. InTech China, Shanghai, pp 123–148

    Google Scholar 

  • Cao X, Harris W (2008) Carbonate and magnesium interactive effect on calcium phosphate precipitation. Environ Sci Technol 42:436–442

    Article  CAS  Google Scholar 

  • Cao X, Harris WG, Josan MS, Nair VD (2007) Inhibition of calcium phosphate precipitation under environmentally-relevant conditions. Sci Total Environ 383:205–215

    Article  CAS  Google Scholar 

  • Elzinga EJ, Sparks DL (2007) Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J Colloid Interface Sci 308:53–70

    Article  CAS  Google Scholar 

  • Fenter P, Geissbühler P, DiMasi E, Srajer G, Sorensen LB, Sturchio NC (2000) Surface speciation of calcite observed in situ by X-ray scattering. Geochim Cosmochim Acta 64(7):1221–1228

    Article  CAS  Google Scholar 

  • Ferguson JF, McCarty PL (1971) Effects of carbonate and magnesium on calcium phosphate precipitation. Environ Sci Technol 5:534–540

    Article  CAS  Google Scholar 

  • Freeman JS, Rowell DLJ (1981) The adsorption and precipitation of phosphate onto calcite. Soil Sci 32:75–84

    Article  CAS  Google Scholar 

  • Gustafsson JP (2011) Visual MINTEQ version 3.0. http://www2.lwr.kth.se/English/OurSoftware/vminteq. Stockholm, Sweden. August 2007

  • Halmann M, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation. Lewis Publications, London, UK, Science and Technology

    Google Scholar 

  • Harris WG, Wang HD, Reddy KR (1994) Dairy manure influence on soil and sediment composition: implication for phosphorus pretension. J Environ Qual 23:1071–1081

    Article  Google Scholar 

  • He ZL, Baligar VC, Ritchey KD, Martens DC (1998) Determination of soluble phosphorus in the presence of organic ligands or fluoride. Soil Sci Soc Am J 62:1538

    Article  CAS  Google Scholar 

  • Hinedi ZR, Goldberg S, Chang AC, Yesinowski JP (1992) A 31P and 1H MAS NMR study of phosphate sorption onto calcium carbonate. J Colloid Interface Sci 152:141–160

    Article  CAS  Google Scholar 

  • House WA, Denison FH (2000) Factors influencing the measurement of equilibrium phosphate concentrations in river sediments. Water Res 34:1187–1200

    Article  CAS  Google Scholar 

  • House WA, Donaldson L (1986) Adsorption and coprecipitation of phosphate on calcite. J Colloid Interface Sci 112:69–80

    Article  Google Scholar 

  • House WA, Casey H, Donaldson L, Smith S (1986) Factors affecting the coprecipitation of inorganic phosphate with calcite in hardwaters–I, laboratory studies. Water Res 20:917–922

    Article  CAS  Google Scholar 

  • Hunger S, Cho H, Sims JT, Sparks DL (2004) Direct speciation of phosphorus in alum-amended poultry litter: solid-state 31P NMR investigation. Environ Sci Technol 38:674–681

    Article  CAS  Google Scholar 

  • Jiang GM (2007) Act on the remediation of contaminations in corp soil (in Chinese). Environ Econ 42:64–65

    Google Scholar 

  • Johnson BB, Ivanov AV, Antzutkin ON, Forsling W (2002) 31P Nuclear magnetic resonance study of the adsorption of phosphate and phenyl phosphates on γ-Al2O3. Langmuir 18:1104–1111

    Article  CAS  Google Scholar 

  • Karaca S, Gürses A, Ejder M, Açikyildiz M (2004) Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J Colloid Interface Sci 277:257–263

    Article  CAS  Google Scholar 

  • Karageorgiou K, Paschalis M, Anastassakis GN (2007) Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J Hazard Mater 139:447–452

    Article  CAS  Google Scholar 

  • Kibalczyc W, Christoffersen J, Christoffersen MR, Zielenkiewicz A, Zielenkiewicz W (1990) The effect of magnesium-ions on the precipitation of calcium phosphates. J Cryst Growth 106:355–366

    Article  CAS  Google Scholar 

  • Lee YB, Kim PJ (2007) Reduction of phosphate adsorption by ion competition with silicate in soil. Korean J Environ Agric 26:286–293

    Article  Google Scholar 

  • Lin Y, Singer PC (2006) Inhibition of calcite precipitation by orthophosphate: speciation and thermodynamic considerations. Geochim Cosmochim Acta 70:2530–2539

    Article  CAS  Google Scholar 

  • Lyklema J (1989) Discrimination between physical and chemical adsorption of ions on oxides. Colloids Surf 37:197–204

    Google Scholar 

  • Merino E, Canals À (2011) Self-accelerating dolomite-for-calcite replacement: self-organized dynamics of burial dolomitization and associated mineralization. Am J Sci 311:573–607

    Article  CAS  Google Scholar 

  • Millero F, Huang F, Zhu XR, Liu XW, Zhang JZ (2001) Adsorption and desorption of phosphate on calcite and aragonite in seawater. Aquat Geochem 7:33–56

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Mielczarski JA, Barres O, Schott J (2000) Surface speciation models of calcite and dolomite/aqueous interfaces and their spectroscopic evaluation. Langmuir 16:2677–2688

    Article  CAS  Google Scholar 

  • Ruiz-Agudo E, Kowacz M, Putnis CV, Putnis A (2010) The role of background electrolytes on the kinetics and mechanism of calcite dissolution. Geochim Cosmochim Acta 74:1256–1267

    Article  CAS  Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Rodriguez-Navarro C, Putnis A (2011) Effect of pH calcite growth at constant α Ca2+/ α CO3 2- ratio and supersaturation. Geochim Cosmochim Acta 75:284–296

    Article  CAS  Google Scholar 

  • Salimi MH, Heughebaert JC, Nancollas GH (1985) Crystal growth of calcium phosphates in the presence of magnesium ions. Langmuir 1:119–122

    Article  CAS  Google Scholar 

  • Sato S, Solomon D, Hyland C, Ketterings QM, Lehmann J (2005) Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ Sci Technol 39:7485–7491

    Article  CAS  Google Scholar 

  • Sawada K (1998) Mechanisms of crystal growth of ionic crystals in solution. Formation, transformation, and growth inhibition of calcium carbonates. In: Ohtaki H (ed) Crystallization processes. John Wiley & Sons Ltd, Chichester, England, pp 39–68

    Google Scholar 

  • Shariatmadari H, Mermut AR (1999) Magnesium and silicon-induced phosphate desorption in smectite, playgorskite, and sepiolite-calcite systems. Soil Sci Soc Am J 63:1167–1173

    Article  CAS  Google Scholar 

  • Shin EW, Han JS, Jang M, Min SH, Park JK, Rowell RM (2004) Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents. Environ Sci Technol 38:912–917

    Article  CAS  Google Scholar 

  • Sims JT, Edwards AC, Schoumans OF, Simard RR (2000) Integrating soil phosphorus testing into environmentally best agricultural management practices. J Environ Qual 29:60–71

    Article  CAS  Google Scholar 

  • Snoeyink VL, Jenkins D (1980) Precipitation and dissolution, In: Water chemistry, John Wiley & Sons, New York, pp 243–315

  • SO HU, Postma D, Jakonsen R, Larsen F (2011) Sorption of phosphate onto calcite results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta 75:2911–2923

    Article  CAS  Google Scholar 

  • Somasundaran P, Agar GE (1967) The zero point of charge of calcite. J Colloid Interface Sci 24:433–440

    Article  CAS  Google Scholar 

  • Stumm W (1992) Chemsitry of solid–water interface. Wiley, New York, p 428

    Google Scholar 

  • Stumm W, Leckie JO (1970) Phosphate exchange with sediments; its role in the productivity of surface waters. Adv Water Pollut Res 26:1–16

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry—an introduction emphasizing chemical equilibria in natural waters DOI:10.1021/ed048pA779.1 (2ed.). John Wiley and Sons, New York

  • Suchanek WJ, Byrappa K, Shuk P, Riman RE, Janas VF, Tenhuisen KS (2004) Mechanochemical–hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution. J Solid State Chem 17:793–799

    Article  Google Scholar 

  • Suzuki T, Inomata S, Sawada K (1986) Adsorption of phosphate on calcite. J Chem Soc Faraday Trans 82:1733–1743

    Article  CAS  Google Scholar 

  • Valsami-Jones E (2001) Mineralogical controls on phosphorus recovery from wastewaters. Mineral Mag 65:611–620

    Article  CAS  Google Scholar 

  • Van der Weijden RD, Comans RNJ (1997) Sorption and sorption reversibility of cadmium on calcite in the presence of phosphate and sulfate. Mar Chem 57:119–132

    Article  Google Scholar 

  • Vinson MD, Arvidson RS, Luttge A (2007) Kinetic inhibition of calcite (104) dissolution by aqueous manganese(II). J Crys Growth 307:116–125

    Article  CAS  Google Scholar 

  • Wang L, Ruiz-Agudo E, Putnis CV, Menneken M, Putnis A (2012) Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils. Environ Sci Technol 46:834–842

    Article  CAS  Google Scholar 

  • Wesolowski DJ, Machesky ML, Ridley MK, Palmer DA, Zhang Z, Fenter P, Předota M, Cummings PT (2008) Ion adsorption on metal oxide surfaces to hydrothermal conditions. ECS Trans 11:167–175

    Article  CAS  Google Scholar 

  • Xu N, Yin HW, Chen ZG, Chen M, Liu SQ (2013) Mechanisms of phosphate adsorption on synthesis calcite. Mater Sci Forum 743–744:597–602

    Article  Google Scholar 

  • Yadav BR, Paliwal KV, Nimgade NM (1984) Effect of magnesium-rich waters on phosphate adsorption by calcite. Soil Sci 138:153–157

    Article  CAS  Google Scholar 

  • Yagi S, Fukushi K (2011) Phosphate sorption on monohydrocalcite. J Miner Pet Sci 1066:109–113

    Article  Google Scholar 

  • Zachara JM, Cowan CE, Resch CT (1991) Sorption of divalent metals on calcite. Geochim Cosmochim Acta 55:1549–1562

    Article  CAS  Google Scholar 

  • Zhang T, Chen Y, Zhao L (2010) Countermeasures on Tianjin Ninghe rural NPS pollution control. Haihe river basin research and planning approach—proceedings of 2009 international symposium of Haihe basin integrated water and environment management. 5:110–115

  • Zhao H, Robert S (2001) Competitive adsorption of phosphate and arsenate on goethite. Environ Sci Technol 35:4753–4757

    Article  CAS  Google Scholar 

  • Zhou JB, Yang SL, Yu JG (2011) Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions. Colloid Surf A 379:102–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (grant no. 21107077, 21377090, and 21071107), Natural Science Foundation of Jiangsu Province ((grant no. BK20131152), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors thank Dr. Taoyun Wang, Dr. Hongying Cheng, Shuling Dong, and li Li for their support with the analytical needs of the project respectively and Peter Malczyk for his collaboration in the production of the manuscript. The authors would also like to acknowledge the insightful comments of anonymous reviews in the production of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Xu.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, N., Yin, H., Chen, Z. et al. Mechanisms of phosphate retention by calcite: effects of magnesium and pH. J Soils Sediments 14, 495–503 (2014). https://doi.org/10.1007/s11368-013-0807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0807-y

Keywords

Navigation