Skip to main content

Advertisement

Log in

Fractionation of chromium in tannery sludge-amended soil and its availability to fenugreek plants

  • POTENTIALLY HARMFUL ELEMENTS IN SOIL-PLANT INTERACTIONS
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Fenugreek (Trigonella foenum-graecum L.) is a medicinal plant with antidiabetic effects. Chromium has been related to better glucose tolerance in humans. The objective of this study was to determine whether tannery sludge could be used for Cr biofortification of fenugreek.

Materials and methods

Soil was mixed with tannery sludge containing 6.03 g Cr kg−1. All Cr was in the form of Cr(III). Three treatments were disposed: control without sludge, and two treatments with 10 and 20 g sludge kg−1, respectively. Control and the 10 g sludge kg−1 treatments received NPK fertilizer to adjust the concentrations of major mineral nutrients to similar levels in all treatments. Soils were potted and planted with fenugreek. Plants harvested at the initial flowering stage were analysed for total Cr, Fe, Zn and Pb. Sequential soil extraction was applied to obtain operationally defined soil Cr fractions.

Results and discussion

Total Cr in all treatments was below or within the allowable range for agricultural soils (100–150 mg kg−1). In control soils, most Cr was in the residual fraction (HF/HClO4 digest). Tannery sludge-amended soils incorporated most Cr into the moderately reducible fraction (oxalic acid/ammonium oxalate extract). In fenugreek shoots, Cr concentrations reached 3.2 mg Cr kg−1, a higher concentration than that reported for other leafy vegetables. Lead concentrations in plant shoots from this treatment were enhanced but hardly exceeded 1 mg Pb kg−1.

Conclusions

Tannery sludge-amended soils containing Cr within the range of permissible concentrations can increase shoot Cr in fenugreek. Only sludge with low Pb concentrations should be used for Cr biofortification of fenugreek.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barceló J, Poschenrieder C (1997) Chromium in plants. In: Canali S, Tittarelli F, Sequi P (eds) Chromium environmental issues. Publ. FrancoAgnelli, Milano, pp 101–129

    Google Scholar 

  • Barlett RJ (1997) Chromium redox mechanisms in soils: should we worry about Cr(VI). In: Canali S, Tittarelli F, Sequi P (eds) Chromium Environmental Issues. Publ. FrancoAgnelli, Milano, pp 3–20

    Google Scholar 

  • Beccaloni E, Vanni F, Beccaloni M, Carere M (2013) Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: estimated intake by population in an industrialized area of Sardinia, Italy. Microchem J 107:190–195

    Article  CAS  Google Scholar 

  • Bonet A, Poschenrieder C, Barceló J (1991) Chromium III-iron interaction in iron sufficient and iron deficient bean plants. I. Growth and nutrient content. J Plant Nutr 14:403–414

    Article  CAS  Google Scholar 

  • Boyd M (2013) The role of supplemental chromium on glucose intolerance and insulin resistance. Topics Clin Nutr 28:171–180

    Article  Google Scholar 

  • Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJF, Graham MC, Ngwenya BT, Farmer JG (2010) Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Sci Total Environ 409:267–277

    Article  CAS  Google Scholar 

  • Chopra S, Ahmad FJ, Khar RK, Motwani SK, Mahdi S, Zeenat Iqbal Z et al (2006) Validated high-performance thin-layer chromatography method for determination of trigonelline in herbal extract and pharmaceutical dosage form. Anal Chim Acta 577:46–51

    Article  CAS  Google Scholar 

  • Duarte B, Silva V, Caçador I (2012) Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol Environ Saf 83:1–7

    Article  CAS  Google Scholar 

  • Fendorf S, La Force MJ, Li G (2004) Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. J Environ Qual 33:2049–2055

    Article  CAS  Google Scholar 

  • Fernández-Aparicio M, Andolfi A, Evidente A, Pérez de Luque A, Rubiales D (2008) Fenugreek root exudates show species-specific stimulation of Orobanche seed germination. Weed Res 48:163–168

    Article  Google Scholar 

  • Gianello C, Domaszak SC, Bortolon L, Kray CH, Martins V (2011) Viability of using tannery and leather residues in the soil. Ciencia Rural 41:242–245

    Article  CAS  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1995) Distribution of heavy metals in rice farming soils. Arch Environ Contam Toxicol 29:476–483

    Article  Google Scholar 

  • Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100

    Article  CAS  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1990) Correlations between extractable chromium, chromium uptake and productivity of beans (Phaseolus vulgaris) grown on tannery sludge-amended soil. In: van Beusichem ML (ed) Plant Nutrition-Physiology and Applications. Kluwer Academic Publ Dordrecht, The Netherlands, pp 307–312

    Chapter  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1991) Chromium and agricultural use of tannery sludges. In: Cot J (ed) Compendium of advanced topics on leather technology, vol 2. Spanish Chemical Association of Leather Industry, Barcelona, pp 587–596

    Google Scholar 

  • Gupta AK, Sinha S (2007) Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. J Hazard Mater 149:144–150

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  Google Scholar 

  • Ho CP, Hseu ZY, Iizka Y, Jien SH (2013) Chromium speciation associated with iron and manganese oxids in serpentine mine tailings. Environ Eng Sci 30:241–147

    Google Scholar 

  • Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319

    Article  CAS  Google Scholar 

  • Kinraide TB, Poschenrieder C, Kopittke PM (2011) The standard electrode potential (Eo) predicts the prooxidant activity and the acute toxicity of metal ions. J Inorg Biochem 105:1438–1445

    Article  CAS  Google Scholar 

  • Kovacs R, Béni A, Karosi R, Sógor C, Posta J (2007) Investigation of chromium content in foodstuffs and nutrition supplements by GFAAS and determination of changing Cr(III) to Cr(VI) during baking and toasting bread. Food Chem 105:1209–1213

    Article  CAS  Google Scholar 

  • Lau FC, Bagchi M, Sen C, Roy S, Bagchi D (2008) Nutrigenomic analysis of diet-gene interactions on functional supplements for weight management. Curr Genome 9:239–251

    Article  CAS  Google Scholar 

  • Lazarus BE, Richards JH, Claassen VP, O’Dell RE (2011) Species specific plant-soil interactions influence plant distribution on serpentine soils. Plant Soil 342:327–344

    Article  CAS  Google Scholar 

  • Lombini A, Llugany M, Poschenrieder C, Barceló J (2003) Influence of the Ca/Mg ratio on Cu resistance in three Silene armeria ecotypes adapted to calcareous soil or to different, Ni-or Cu-enriched, serpentine sites. J Plant Physiol 160:1451–1456

    Article  CAS  Google Scholar 

  • Mandal BK, Vankayala R, Kumar LU (2011) Speciation of chromium in soil and sludge in the surrounding tannery region, Ranipet, Tamil Nadu. ISRN Toxicol. doi:10.5402/2011/697980

    Google Scholar 

  • McGrath SP, Chang AC, Page AL, Witter E (1994) Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the USA. Environ Rev 2:108–118

    Article  CAS  Google Scholar 

  • Mills CT, Morrison JM, Goldhaber MB, Ellefsen KJ (2011) Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater. Appl Geochem 26:1488–1501

    Article  CAS  Google Scholar 

  • Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Nat Acad Sci USA 186:6544–6549

    Google Scholar 

  • Oze C, Skinner C, Schroth AW, Coleman RG (2008) Growing up green on serpentine soils. Biogeochemistry of serpentine vegetation in the Central Cosat Range of California. Appl Geochem 23:3391–3403

    Google Scholar 

  • Poschenrieder C, Vázquez MD, Bonet A, Barceló J (1991) Chromium III-iron interaction in iron sufficient and iron deficient bean plants. 2. Ultrastructural aspects. J Plant Nutr 14:415–428

    Article  CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Barceló J (1993) Chromium-induced inhibition of ethylene evolution in bean (Phaseolus vulgaris) leaves. Physiol Plant 89:404–408

    Article  CAS  Google Scholar 

  • Rafique U, Kankab H, Igbal S (2011) Quantitative speciation of heavy metals in soiladn crops of agricultural fields of Islamabad, Pakistan. Chem Spec Bioavailab 23:111–117

    Google Scholar 

  • Ranieri E, Fratino U, Petruzelli D, Carraro Borges A (2013) A comparison between Phragmites australis and Helianthus annuus in chromium phytoextraction. Water Air Soil Pollut 224:1465

    Article  Google Scholar 

  • Randhawa GS, Gill BS, Saini SS, Singh J (2009) Agronomic technology for production of fenugreek (Trigonella foenum graecum L.) seeds. J Herbs Spices Med Plant 4:43–49

    Article  Google Scholar 

  • Rodríguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and Comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    Article  Google Scholar 

  • Romaguera F, Boluda R, Fornes F, Abad M (2008) Comparison of three sequential extraction procedures for trace element partitioning in three contaminated Mediterranean soils. Environ Geochem Health 30:171–175

    Article  CAS  Google Scholar 

  • Säumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2012) How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ Pollut 165:124–132

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Sinha S, Gupta AK, Bhatt K (2007a) Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: involvement of antioxidants. Ecotox Environ Saf 67:267–277

    Article  CAS  Google Scholar 

  • Sinha S, Gupta AK, Bhatt K (2007b) Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: involvement of antioxidants. Ecotoxicol Environ Safe 67:267–277

    Article  CAS  Google Scholar 

  • Sinha S, Mishra RK, Sinam G, Mallick S, Gupta AK (2013) Comparative evaluation of metal phytoremediation of trees, grasses, and flowering plants from tannery- wastewater-contaminated soil in relation to physicochemical properties. Soil Sediment Contam 22:958–983

    Article  Google Scholar 

  • Tahiri S, de la Gardia M (2009) Treatment and valorization of leather industry solid wastes: a review. J Am Leather Chem Assoc 104:52–67

    Google Scholar 

  • TEGEWA e.v. (2011) Der Lederhersteller und REACH. Leitfaden für die Lederindustrie zur Erfüllung ihrer REACH-Pflichten. Url: http://www.tegewa.de/uploads/media/2011_06_Lederhersteller_Leitfaden_final_Vers.1.1_02.pdf accessed 27 May 2013

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analyt Chem 51:844–851

    Article  CAS  Google Scholar 

  • Vázquez MD, Poschenrieder C, Barceló J (1987) Chromium (VI)-induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59:427–438

    Google Scholar 

  • Vincent JB, Love ST (2012) The need for combined inorganic, biochemical, and nutritional studies of chromium (III). Chem Biodivers 9:1923–1941

    Article  CAS  Google Scholar 

  • Welch RM, Cary EE (1975) Concentrations of chromium, nickel, and vanadium in plant materials. J Agric Food Chem 23:479–482

    Google Scholar 

  • Zayed A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Spanish Government (project BFU2010-14873). Tannery sludge and information on its composition was provided by Igualadina de Depuració I Recuperació S.L., Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Poschenrieder.

Additional information

Responsible editor: Maria Manuela Abreu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allué, J., Garcés, A.M., Bech, J. et al. Fractionation of chromium in tannery sludge-amended soil and its availability to fenugreek plants. J Soils Sediments 14, 697–702 (2014). https://doi.org/10.1007/s11368-013-0776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0776-1

Keywords

Navigation