Advertisement

Journal of Soils and Sediments

, Volume 13, Issue 7, pp 1189–1200 | Cite as

Optimization of arsenic and pentachlorophenol removal from soil using an experimental design methodology

  • Nicolas Reynier
  • Jean-François BlaisEmail author
  • Guy Mercier
  • Simon Besner
SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE

Abstract

Purpose

In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.

Materials and methods

A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i  = 2.5–30 mg kg−1) and inorganic ([As] i  = 50–250 mg kg−1, [Cr] i  = 35–220 mg kg−1, and [Cu] i  = 80–350 mg kg−1) compounds.

Results and discussion

Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH] = 1 N, [cocamidopropylbetaine] i  = 2 % w w−1, t = 2 h, T = 80 °C, and PD = 10 %).

Conclusions

The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination.

Keywords

Alkaline leaching Arsenic Pentachlorophenol Experimental design methodology Polluted soil Surfactant 

Notes

Acknowledgments

Sincere thanks are extended to the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs for their financial contributions.

References

  1. ADEME (1998) Connaître pour agir. Guides et cahiers techniques. Agence de l’Environnement et de la Maîtrise de l’Énergie, Angers, France, 128 pGoogle Scholar
  2. Amofah LR, Maurice C, Kumpiene J, Bhattacharya P (2011) The influence of temperature, pH/molarity and extractant on the removal of arsenic, chromium and zinc from contaminated soil. J Soils Sediments 11(8):1334–1344CrossRefGoogle Scholar
  3. Augustijin-Beckers PWM, Hornsby AG, Wauchope RD (1994) SCS/ARS/CES pesticide properties database for environmental decision making II. Additional compounds. Rev Environ Contam Toxicol 137:6–16Google Scholar
  4. Banerji SK, Wei SM, Bajpai RK (1993) Pentachlorophenol interactions with soil. Water Air Soil Pollut 69(1–2):149–163CrossRefGoogle Scholar
  5. Barnes HM (2008) Wood preservation trends in North America forest products laboratory. Forest and Wildlife Research Center, Mississippi State University; Mississippi State, Mississippi, 15 pGoogle Scholar
  6. CCME (1997a) Recommandations canadiennes pour la qualité des sols concernant le PCP: Environnement et Santé humaine. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba, Canada, 61 pGoogle Scholar
  7. CCME (1997b) Canadian soil guidelines for copper: environmental and human health. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba, Canada, 61 pGoogle Scholar
  8. Chirenje T, Ma LQ, Clark C, Reeves M (2003) Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles. Environ Pollut 124(3):407–417CrossRefGoogle Scholar
  9. Cooper PA, Ung YT (1997) Effect of water repellents on leaching of CCA from treated fence and deck units—an update. International Research Group, IRG/WP 97–50086, Stockholm, SwedenGoogle Scholar
  10. Czaplicka M (2006) Photo-degradation of chlorophenols in the aqueous solution. J Hazard Mater B134:45–59CrossRefGoogle Scholar
  11. DiVincenzo JP, Sparks DL (2001) Sorption of the neutral and charged forms of pentachlorophenol on soil: evidence for different mechanisms. Arch Environ Contam Toxicol 40:445–450CrossRefGoogle Scholar
  12. Fabre G, Ayele J, Mazet L, Lafrance P (1990) Removal of pentachlorophenol by adsorption onto various materials: the effect of organic co-adsorbates (humic substances and lindane). J Water Sci 3:277–292Google Scholar
  13. Fisher B (1991) Pentachlorophenol: toxicology and environmental fate. J Pesticide Reform 11(1):2–5Google Scholar
  14. Gräfe M, Tappero RV, Marcus MA, Sparks DL (2008) Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil. J Colloid Interface Sci 321:1–20CrossRefGoogle Scholar
  15. Groenier JC, Lebow S (2006) Preservative-treated wood and alternative products in the forest service. USDA Forest Service Technology and Development Program, TE42G01—Technical Services ECAP; Manitoba, Canada, 49 pGoogle Scholar
  16. Goupy J (2006) Tutoriel: Les plans d’expériences. Revue Modulad, ed. no. 34Google Scholar
  17. Hedtke SF, West CW, Allen KN (1986) Toxicity of pentachlorophenol to aquatic organisms under naturally varying and controlled environmental conditions. Environ Toxicol Chem 5:531–542CrossRefGoogle Scholar
  18. Henke KR (2009) Arsenic: environmental chemistry, health threats and waste treatment. Wiley, New YorkGoogle Scholar
  19. Jang M, Hwang JS, Choi SI (2007) Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere 66:8–17CrossRefGoogle Scholar
  20. Khodadoust AP, Reddy KR, Maturi K (2005) Effect of different extraction agents on metal and organic contaminant removal from a field soil. J Hazard Mater 117(1):15–24CrossRefGoogle Scholar
  21. Lee LS, Suresh P, Rao C, Nkedi-Kizza P, Delfino JJ (1990) Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol–water and soil–water systems. Environ Sci Technol 24(5):654–661CrossRefGoogle Scholar
  22. Lespagnol G. (2003) Lixiviation du Cr, du Cu et de l’As (CCA) à partir de sols contaminés sur des sites de traitement du bois. PhD thesis, École Nationale Supérieure des Mines, Saint-Étienne, France, 212 pGoogle Scholar
  23. Mercier G, Duchesne J, Blackburn D (2001) Prediction of metal removal efficiency from contaminated soils by physical methods. J Environ Eng 127(4):348–358CrossRefGoogle Scholar
  24. Mulligan CN, Eftekhari F (2003) Remediation with surfactant foam of PCP-contaminated soil. Eng Geol 70:269–279CrossRefGoogle Scholar
  25. Ottosen LM, Jensen PE, Hansen HK, Ribeiro A, Allard B (2009) Electrodialytic remediation of soil slurry-removal of Cu, Cr, and As. Sep Sci Technol 44(10):2245–2268CrossRefGoogle Scholar
  26. Reddy KR, Darko-Kagya K, Al-Hamdan AZ (2011) Electrokinetic remediation of pentachlorophenol contaminated clay soil. Water Air Soil Pollut 221(1–4):35–44CrossRefGoogle Scholar
  27. Reynier N, Blais JF, Mercier G, Besner S (2013) Treatment of arsenic- and pentachlorophenol-polluted soil using flotation. Water Air Soil Pollut 4(224):1–12Google Scholar
  28. Riveiro-Huguet M, Marshall WD (2011) Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils. Chemosphere 83:668–673CrossRefGoogle Scholar
  29. Sikdar SK, Grosse D, Rogut I (1998) Membrane technologies for remediating contaminated soils: a critical review. J Membr Sci 151:75–85CrossRefGoogle Scholar
  30. Stilwell DE, Gorny KD (1997) Contamination of soil with copper, chromium, and arsenic under decks built from pressure treated wood. Bull Environ Contam Toxicol 58:22–29CrossRefGoogle Scholar
  31. Subramanian B (2007) Exploring neoteric solvent extractants: applications in the removal of sorbates from solid surfaces and regeneration of automotive catalytic converters. University of Cincinnati, Division of Research and Advanced Studies, Cincinnati, 82 pGoogle Scholar
  32. Tse KKC, Lo SL (2002) Desorption kinetics of PCP-contaminated soil: effect of temperature. Water Res 36:284–290CrossRefGoogle Scholar
  33. US Congress (1995) Cleaning up contaminated wood-treating sites. OTA-BP-ENV-164, Office of Technology Assessment, U.S. Government Printing Office, Washington, DC, September, 45 pGoogle Scholar
  34. World Health Organisation (2003) Pentachlorophenol in drinking-water background fir development of WHO guidelines for drinking-water quality. World Health Organisation, WHO/SDE/WSH/03.04/62, Geneva, Swiss, 18 pGoogle Scholar
  35. Xiao YF, Liu GM, Dong YL, Yin LL (2008) Rapid determination of pentachlorophenol in soil samples. Yankuang Ceshi 27(2):117–119Google Scholar
  36. Zagury GJ, Dobran S, Estrela S, Deschênes L (2008) Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles. Environ Toxicol Chem 27(4):799–807CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolas Reynier
    • 1
  • Jean-François Blais
    • 1
    Email author
  • Guy Mercier
    • 1
  • Simon Besner
    • 2
  1. 1.Institut National De La Recherche Scientifique, Terre et EnvironnementINRS-ETEQuébecCanada
  2. 2.Institut de recherche d’Hydro-Québec (IREQ)VarennesCanada

Personalised recommendations