Skip to main content
Log in

In situ gradient distribution of polycyclic aromatic hydrocarbons (PAHs) in contaminated rhizosphere soil: a field study

  • SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Little information is available heretofore on the gradient distribution of persistent organic pollutants in rhizosphere on a field scale. In this field study, we seek to explore the in situ distribution gradient of polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soil proximal to the roots.

Materials and methods

Clover (Trifolium pratense L.) and hyssop (Hyssopus officinalis L.) grew in situ in the contaminated field soil near a petrochemical plant and were harvested when about 30 cm tall with mature roots. Rhizosphere soils of the plants were sampled including the rhizoplane, strongly adhering soil, and loosely adhering soil. Eleven EPA-priority PAHs were detected in each layer of rhizosphere soils in proximity to the root surface.

Results and discussion

The PAH concentrations followed the descending order of bulk soil, loosely adhering soil, strongly adhering soil, and rhizoplane soil in proximity to the root surface of clover and hyssop. The rhizosphere effect (R, in percent) on PAH distribution clearly decreased with increasing distance from the root, and a more significant decrease was observed for hyssop compared to clover. R values were generally lower for three- and four-ringed PAHs in the rhizosphere, which were more significant in loosely and strongly adhering rhizosphere layers.

Conclusions

Our field observations combined with previous potted studies demonstrated that PAH concentrations in rhizosphere soils increased with distance from the root. Results of this work provide new information on the fate of PAHs in rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717

    Article  CAS  Google Scholar 

  • Binet P, Portal JM, Leyval C (2000) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017

    Article  CAS  Google Scholar 

  • Collins C, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40:45–52

    Article  CAS  Google Scholar 

  • Corgié SC, Beguiristain T, Leyval C (2004) Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L. Appl Environ Microbiol 70:3552–3557

    Article  Google Scholar 

  • Corgié SC, Joner EJ, Leyval C (2003) Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil 257:143–150

    Article  Google Scholar 

  • Dean-Ross D, Moody JD, Freeman JP, Doergem DR, Cernigliam CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microb Lett 204:205–211

    Article  CAS  Google Scholar 

  • Gao YZ, Collins CD (2009) Uptake pathways of polycyclic aromatic hydrocarbons in white clover. Environ Sci Technol 43:6190–6195

    Article  CAS  Google Scholar 

  • Gao Y, Wu SC, Yu XZ, Wong MH (2010a) Dissipation gradients of phenanthrene and pyrene in the rice rhizosphere. Environ Pollut 158:2596–2603

    Article  CAS  Google Scholar 

  • Gao YZ, Li H, Gong SS (2012) Ascorbic acid enhances the accumulation of polycyclic aromatic hydrocarbons in roots of tall fescue (Festuca arundinacea Schreb.). PLoS One 7:e50467

    Article  CAS  Google Scholar 

  • Gao YZ, Ling WT (2006) Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biol Fert Soils 42:387–394

    Article  CAS  Google Scholar 

  • Gao YZ, Ren LL, Ling WT, Kang FX, Zhu XZ, Sun BQ (2010b) Effects of low-molecular-weight organic acids on sorption–desorption of phenanthrene in soils. Soil Sci Soc Am J 74:51–59

    Article  CAS  Google Scholar 

  • Gao YZ, Yang Y, Ling WT, Kong HL, Zhu XZ (2011) Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J 75:1694–1703

    Article  CAS  Google Scholar 

  • Gao YZ, Zhu LZ (2005) Phytoremediation for phenanthrene and pyrene in soils. J Environ Sci 17:14–18

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • He Y, Xu JM, Lv XF, Ma ZH, Wu JJ, Shi JC (2009) Does the depletion of pentachlorophenol in root–soil interface follow a simple linear dependence on the distance to root surfaces? Soil Biol Biochem 41:1807–1813

    Article  CAS  Google Scholar 

  • Hofrichter M, Scheibner K, Schneegass I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404

    CAS  Google Scholar 

  • Johnson DL, Anderson DR, McGrath SP (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37:2334–2336

    Article  CAS  Google Scholar 

  • Joner EJ, Johansen A, dela Cruz MAT, Szolar OJH, Loibner A, Portal JM, Leyval C (2001) Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol 35:2773–2777

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ Sci Technol 37:2371–2375

    Article  CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Biores Technol 99:4732–4741

    Article  CAS  Google Scholar 

  • Kang FX, Chen DS, Gao YZ, Zhang Y (2010a) Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biol 10:210

    Article  Google Scholar 

  • Kang FX, Gao YZ, Wang Q (2010b) Inhibition of free DNA degradation by the deformation of DNA exposed to trace polycyclic aromatic hydrocarbon contaminants. Environ Sc Technol 44:8891–8896

    Article  CAS  Google Scholar 

  • Kong HL, Sun R, Gao YZ, Sun BQ (2013) Elution of polycyclic aromatic hydrocarbons in soil columns using low-molecular-weight organic acids. Soil Sc Soc Am J 77:72–82

    Article  Google Scholar 

  • Ling WT, Ren LL, Gao YZ, Zhu XZ, Sun BQ (2009) Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biol Biochem 41:2187–2195

    Article  CAS  Google Scholar 

  • Ling WT, Zeng YC, Gao YZ, Dang HJ, Zhu XZ (2010) Availability of polycyclic aromatic hydrocarbons in aging soils. J Soils Sediments 10:799–807

    Article  CAS  Google Scholar 

  • Liste HH, Alexander M (2000) Plant-promoted pyrene degradation in soils. Chemosphere 40:7–10

    Article  CAS  Google Scholar 

  • Lu HL, Zhang Y, Liu BB, Liu JC, Ye J, Yan CL (2011) Rhizodegradation gradients of phenanthrene and pyrene in sediment of mangrove (Kandelia candel (L.) Druce). J Hazard Mater 196:263–269

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Ma B, Wang JJ, Xu MM, He Y, Wang HZ, Wu LS, Xu JM (2012) Evaluation of dissipation gradients of polycyclic aromatic hydrocarbons in rice rhizosphere utilizing a sequential extraction procedure. Environ Pollut 162:413–421

    Article  CAS  Google Scholar 

  • Meharg AA, Killham K (1990) Carbon distribution within the plant and rhizosphere for Lolium perenne subjected to anaerobic soil conditions. Soil Biol Biochem 22:643–647

    Article  CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    CAS  Google Scholar 

  • Oleszczuk P, Baran S (2007) Polyaromatic hydrocarbons in rhizosphere soil of different plants: effect of soil properties, plant species, and intensity of anthropogenic pressure. Commun Soil Sci Plant Anal 38:171–188

    Article  CAS  Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecol 84:816–826

    Article  Google Scholar 

  • Reilley KA, Banks MK, Schwab AP (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219

    Article  CAS  Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ Pollut 136:477–484

    Article  CAS  Google Scholar 

  • Sarkar S, Martinez AT, Martinez MJ (1997) Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim Biophys Acta 1339:23–30

    Article  CAS  Google Scholar 

  • Schnoor JL, Lich LA, McCutcheon SC (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Simonich SL, Hites RA (1994) Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943

    Article  CAS  Google Scholar 

  • Sun BQ, Liu J, Gao YZ, Sun YD (2012) The impact of different root exudate components on phenanthrene availability in soil. Soil Sc Soc Am J 76:2041–2050

    Article  CAS  Google Scholar 

  • White JC, Mattina MI, Lee WY, Eitzer BD, Iannucci-Berger W (2003) Role of organic acids in enhancing the desorption and uptake of weathered p, p′-DDE by Cucurbita pepo. Environ Pollut 124:71–80

    Article  CAS  Google Scholar 

  • Yoshitomi KJ, Shann JR (2001) Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Biol Biochem 33:1769–1776

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21077056, 41171380, 51278252, 41171193), the Fundamental Research Funds for the Central Universities of China (KYZ201109), and the Key Technology R&D Program of Jiangsu Province (BE2011780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanting Ling.

Additional information

Responsible editor: Juxiu Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, W., Dang, H. & Liu, J. In situ gradient distribution of polycyclic aromatic hydrocarbons (PAHs) in contaminated rhizosphere soil: a field study. J Soils Sediments 13, 677–685 (2013). https://doi.org/10.1007/s11368-013-0655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0655-9

Keywords

Navigation