Journal of Soils and Sediments

, Volume 12, Issue 10, pp 1641–1648 | Cite as

The role of stromatolites in explaining patterns of carbon, nitrogen, phosphorus, and silicon in the Sečovlje saltern evaporation ponds (northern Adriatic Sea)

  • Petra Škrinjar
  • Jadran Faganeli
  • Nives OgrincEmail author



In summer 2007, biweekly benthic fluxes of the biogenic elements carbon (C), nitrogen (N), silicon (Si), and phosphorus (P) were studied in the Sečovlje saltern (salt-making facility) in the northern Adriatic Sea, Slovenia in order to determine the impact of stromatolite (“petola”) on the geochemical properties of saltern sediments.

Materials and methods

The brine and pore waters were analyzed for salinity, NH 4 + , NO 3 , PO 4 3− , SiO 4 4− , total dissolved nitrogen, total dissolved phosphorus, and fluorescent dissolved organic matter. The sediment was analyzed for organic carbon (OC), total nitrogen (TN), total and organic phosphorus (OP), and biogenic Si concentrations, as well as values of δ 13COC and δ 15NTN.

Results and discussion

Nutrient concentrations in brine water increased along the salinity gradient due to different processes, such as the evaporative concentrations of seawater, bacterial activity, more pronounced transformation and degradation of organic matter, and regeneration of nutrients. The petola from the Sečovlje saltern, which is predominately composed of cyanobacterial and diatom communities, develops during the early evaporation stage and survives during high salinity and halite crystallization. Nitrogen fixation and P removal were the principal biogeochemical processes controlling dissolved inorganic N and P concentrations. At higher salinities, N limitation was more important. Microbes decomposed at higher salinities, and the remineralized N and P nutrients were released from surface pore waters to the brine. OP remineralization was also an important process influencing the distribution of PO 4 3− concentrations in pore waters deeper in the sediments. The increasing SiO 4 4− concentrations with increasing salinity in the brine waters were due to dissolution of diatom frustules, while the decrease in pore water SiO 4 4− was probably the consequence of microbial uptake.


This study provides a better understanding of nutrient cycling and the geochemical processes in the Sečovlje saltern.


Cyanobacteria Hypersaline environment Northern Adriatic Nutrients Stromatolites 

Supplementary material

11368_2012_605_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1083 kb)


  1. Aspila KI, Agemian H, Chau ASY (1976) A semi-automatic method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197CrossRefGoogle Scholar
  2. Benning L, Phoenix VR, Yee N, Konhauser KO (2004a) The dynamics of cyanobacteria silicification: an infrared micro-spectroscopic investigation. Geochim Cosmochim Acta 68:729–741CrossRefGoogle Scholar
  3. Benning L, Phoenix VR, Yee N, Tobin MJ (2004b) Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy. Geochim Cosmochim Acta 68:743–757CrossRefGoogle Scholar
  4. Bidl KD, Azam F (2001) Bacterial control of silicon regeneration from diatom detritus: significance of bacterial ectohydrolases and species identity. Limnol Oceanogr 46:1606–1623CrossRefGoogle Scholar
  5. Boudreau BP (1996) The diffusive tortuosity of fine-grained unlithifield sediments. Geochim Cosmochim Acta 60:3139–3142CrossRefGoogle Scholar
  6. Bruce LC, Imberger J (2009) The role of zooplankton in the ecological succession of plankton and benthic algae across a salinity gradient in the Shark Bay solar salt ponds. Hydrobiol 626:111–128CrossRefGoogle Scholar
  7. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005a) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79CrossRefGoogle Scholar
  8. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005b) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234CrossRefGoogle Scholar
  9. Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology. Adv Mar Biol 48:427–431Google Scholar
  10. Casillas-Martinez L, Gonzales ML, Fuentes-Figueroa Z, Castro CM, Nieves-Mendez D, Hernandez C, Ramırez W, Sytsma RE, Perez-Jimenez J, Visscher PT (2005) Community structure, geochemical characteristics and mineralogy of a hypersaline microbial mat, Cabo Rojo, PR. Geomicrobiol J 22:269–281CrossRefGoogle Scholar
  11. Coleman MU, White MA (1993) The role of biological disturbances in the production of solar salt. Seventh Symp Salt 1:623–631Google Scholar
  12. De Master DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  13. Faganeli J, Pezdič J, Ogorelec B, Dolenec T, Čermelj B (1999) Salt works of Sečovlje (Gulf of Trieste, northern Adriatic)—a sedimentological and biogeochemical laboratory for evaporitic environments. RMZ-Mater Geoenviron 46:491–499Google Scholar
  14. Giordano M, Beardall J (2006) Impact of environmental conditions on photosynthesis, growth and carbon allocation strategies of hypersaline species of Dunaliella. In Lekkas TD, Korovessis NA (eds) Proc. 1st Int Conf on the Ecological Importance of Solar Saltworks (CEISSA 06), Santorini Island, Greece, 20–22 October 2006, pp. 65–71Google Scholar
  15. Grasshoff PN, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, WeiheimGoogle Scholar
  16. Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol 5:323–331CrossRefGoogle Scholar
  17. Gunde-Cimerman N, Zalar P, De Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  18. Huon S, Grousset FE, Burdloff D, Bardoux G, Mariotti A (2002) Sources of fine-sized OM in North Atlantic Heinrich Layers: δ 13C and δ 15N tracers. Geochim Cosmochim Acta 66:223–239CrossRefGoogle Scholar
  19. Javor B (1989) Hypersaline environments - microbiology and biogeochemistry. Springer Verlag, Berlin, p 328Google Scholar
  20. Joint I, Henriksen P, Garde K, Riemann B (2002) Primary production, nutrient assimilation and microzooplankton grazing along a salinity gradient. FEMS Microbiol Ecol 39:245–257CrossRefGoogle Scholar
  21. Knoppers B, Landim de Souza WF, Landim de Souza MF, Rodriguez EG, da Cunha Viana Landim EF, Vieira AR (1996) In situ measurements of benthic primary production, respiration and nutrient fluxes in a hypersaline coastal lagoon of SE Brazil. Rev Bras Oceanogr 44:155–165Google Scholar
  22. Kovač N (2009) Chemical characterization of stromatolitic ‘petola’ layer (Sečovlje salt-pans, Slovenia) using FT-IR spectroscopy. Ann Ser Hist Nat 19:1–8Google Scholar
  23. Krom MD, Berner RA (1980) The diffusion coefficients of sulfate, ammonium and phosphate ions in anoxic marine sediments. Limnol Oceanogr 25:327–337CrossRefGoogle Scholar
  24. Ladakis M, Dassenakis M, Pantazidou A (2006) Nitrogen and phosphorus in coastal sediments covered by cyanobacteria mats. J Soil Sci 6:46–54Google Scholar
  25. Lerman A (1979) Geochemical processes water and sediment environments. Wiley, New YorkGoogle Scholar
  26. Levine SN, Schindler DW (1992) Modification of the N:P ratio in lakes by in situ processes. Limnol Oceanogr 37:917–935CrossRefGoogle Scholar
  27. Ludwig R, Pringault O, de Wit R, de Beer D, Jonkers HM (2006) Limitation of oxygenic photosynthesis and oxygen consumption by phosphate and organic nitrogen in a hypersaline microbial mat: a microsensor study. FEMS Microbiol Ecol 57:9–17CrossRefGoogle Scholar
  28. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  29. Ogorelec B, Mišič M, Faganeli J (1991) Marine geology of the Gulf of Trieste (northern Adriatic): sedimentological aspects. Mar Geol 99:79–92CrossRefGoogle Scholar
  30. Ogorelec B, Mišič M, Faganeli J (2000) Sečoveljske soline—geološki laboratorij v naravi. Ann Ser Hist Nat 10:243–252Google Scholar
  31. Ogrinc N, Faganeli J (2006) Phosphorous regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea). Estuar Coast Shelf Sci 67:579–588CrossRefGoogle Scholar
  32. Ogrinc N, Fontolan G, Faganeli J, Covelli S (2005) Carbon and nitrogen isotope composition of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. Mar Chem 95:163–181CrossRefGoogle Scholar
  33. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348Google Scholar
  34. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity in increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiol 466:61–72CrossRefGoogle Scholar
  35. Oren A (2009) Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat Microb Ecol 56:193–204CrossRefGoogle Scholar
  36. Pantoja S, Repeta J, Sachs JP, Sigman DM (2002) Stable isotope constraints on the nitrogen cycle of the Mediterranean Sea water column. Deep-Sea Res I 49:1609–1621CrossRefGoogle Scholar
  37. Pašić L, Galan Bartual SG, Poklar Ulrih N, Grabnar M, Herzog Velikonja B (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498CrossRefGoogle Scholar
  38. Pašić L, Poklar Ulrih N, Černigoj M, Grabnar M, Herzog Velikonja B (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18CrossRefGoogle Scholar
  39. Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155CrossRefGoogle Scholar
  40. Schneider J (1979) Stromatolithic Milieus in Salinen der Nord-Adria (Sečovlje, Portorož, Jugoslawien). In: Krumbein W (ed) Oldenburger Symposium über Cyanobakterien, 1977,—Taxonomische Stellung und Ökologie. Universität Oldenburg, Oldenburg, pp 93–106Google Scholar
  41. Schneider J, Herrmann GA (1979) Saltworks—natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Coogan AH, Hauder L (eds) Fifth international symposium on salt. Northern Ohio Geological Society, Cleveland, pp 371–381Google Scholar
  42. Skoog A, Hall PO, Hulth S, Paxeus N, Rutgers van der Loeff M, Westerlund S (1996) Early diagenetic reduction and sediment–water exchange of fluorescent dissolved organic matter in coastal environment. Geochim Cosmochim Acta 60:3619–3629CrossRefGoogle Scholar
  43. Stiller M, Nissenbaum A (1999) Geochemical investigation of phosphorus and nitrogen in the hypersaline Dead Sea. Geochim Cosmochim Acta 63:3467–3475CrossRefGoogle Scholar
  44. Tkavc R, Gostinčar C, Turk M, Visscher PT, Oren A, Gunde-Cimerman N (2010) Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol Ecol 75:48–62CrossRefGoogle Scholar
  45. Wollast R, Garrels RM (1971) Diffusion coefficient of silica in seawater. Nature 229:94–96Google Scholar
  46. Zalar P, Kocuvan M, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeast colonize wood immersed in hypersaline water. Bot Mar 48:323–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petra Škrinjar
    • 1
  • Jadran Faganeli
    • 1
  • Nives Ogrinc
    • 2
    Email author
  1. 1.Marine Biological StationNational Institute of BiologyPiranSlovenia
  2. 2.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations