Skip to main content

Advertisement

Log in

A multivariate approach for anomaly separation of potentially toxic trace elements in urban and peri-urban soils: an application in a southern Italy area

  • SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Geogenic soil enrichment and anthropogenic pollution by potentially toxic trace elements (PTEs) are two processes acting together. Although it is often difficult, it is necessary to separate the two processes for risk assessment and understanding the environmental implications. The aim of this study was to analyse the soil concentrations of various PTEs in a southern Italy area in order to: (1) determine their different correlation structure to isolate sources of variation acting at different spatial scales and (2) to define potential anomalies based on the correlation structure.

Materials and methods

In the urban and peri-urban area of Cosenza-Rende, 149 topsoil samples were collected (0.10 m) and analysed for different elements by X-ray fluorescence spectrometry. Principal component analysis and factorial kriging analysis were used to map the spatial distribution of PTEs in topsoil and to identify the main factors influencing their spatial variability.

Results and discussion

Two groups of PTEs were identified: the first group included As, Pb and Zn; and the second one Al, Co, Cr, Fe, La, Nb, Ni, Ti and V. The first group was related to anthropogenic causes, while the second one was more related to parent rock composition. The regionalized factors at different scales of variability allowed to aggregate and summarize the joint variability in the PTEs and consider the probable causes of soil pollution.

Conclusions

The study allowed analysing and quantifying the sources (environmental or anthropogenic) of variation of PTEs acting at different spatial scale and defining the spatial anomalies based on the correlation structure associated at the different spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alary C, Demeougeot-Renard H (2010) Factorial kriging analysis as a tool for explaining the complex spatial distribution of metals in sediments. Environ Sci Technol 44:593–599

    Article  CAS  Google Scholar 

  • ARSSA (2003) Carta dei suoli della Calabria. Rubettino Industrie Grafiche e Editoriali, Soveria Mannelli

    Google Scholar 

  • Atteia O, Dubois JP, Webster R (1994) Geostatistical analysis of soil contamination in the Swiss Jura. Environ Pollut 86:315–327

    Article  CAS  Google Scholar 

  • Borůvka L, Vacek O, Jehlička I (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128:289–300

    Article  Google Scholar 

  • Brus DJ, de Gruijter JJ, Walvoort DJJ, de Vries F, Bronswijk JJB, Römkens PFAM, de Vries W (2002) Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. J Environ Qual 31:1875–1884

    Article  CAS  Google Scholar 

  • Carroll ZL, Oliver MA (2005) Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 128:354–374

    Article  Google Scholar 

  • Cattle JA, McBratney AB, Minasny B (2002) Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. J Environ Qual 31:1576–1588

    Article  CAS  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cicchella D, De Vivo B, Lima A, Albanese S, Fedele L (2008) Urban geochemical mapping in the Campania region (Italy). Geochem Explor Environ Anal 8:19–29

    Article  CAS  Google Scholar 

  • Coşkun M, Steinnes E, Frontasyeva MV, Sjobakk TE, Demkina S (2006) Heavy metal pollution of surface soil in the Thrace region, Turkey. Environ Monit Assess 119:545–556

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology (3rd edn). Wiley, New York

    Google Scholar 

  • FAO (1998) World reference base for soil resources. World Soil Resources Rep. 84. FAO, Rome

  • Goovaerts P (1992) Factorial kriging analysis: a useful tool for exploring the structure of multivariate spatial soil information. J Soil Sci 43:597–619

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goovaerts P, Webster R (1994) Scale-dependent correlation between topsoil copper and cobalt concentrations in Scotland. Eur J Soil Sci 45:79–95

    Article  CAS  Google Scholar 

  • Goovaerts P, Webster R, Dubois J-P (1997) Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environ Ecol Stat 4:31–48

    Google Scholar 

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24:269–286

    Article  Google Scholar 

  • Hooda PS (2010) Introduction. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester, pp 3–8

    Google Scholar 

  • Jimenez-Espinosa R, Sousa AJ, Chica-Olmo M (1993) Identification of geochemical anomalies using principal component analysis and factorial kriging analysis. J Geochem Explor 46:245–256

    Article  CAS  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, San Diego

    Google Scholar 

  • Juang KW, Lee DY, Ellsworth TR (2001) Using rank-order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site. J Environ Qual 30:894–903

    Article  CAS  Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma 148:189–199

    Article  CAS  Google Scholar 

  • Lajaunie C, Béhaxètéguy JP (1989) Elaboration d’un programme d’ajustement semi-automatique d’un modèle de corégionalisation—Théorie. Technical Report N21/89/G. ENSMP, Paris, p 6

  • Le Pera E, Critelli S, Sorriso-Valvo M (2001) Weathering of gneiss in Calabria, southern Italy. Catena 42:1–15

    Article  Google Scholar 

  • Lin YP, Chang TK, Shih CW, Tseng CH (2002) Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environ Geol 42:900–909

    Article  CAS  Google Scholar 

  • Liu H, Chen LP, Ai YW, Yang X, Yu YH, Zuo YB, Fu GY (2009) Heavy metal contamination in soil alongside mountain railway in Sichuan, China. Environ Monit Assess 152:25–33

    Article  CAS  Google Scholar 

  • Maas S, Scheifler R, Benslama M, Crini N, Lucot E, Brahmia Z, Benyacoub S, Giraudoux P (2010) Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environ Pollut 158:2294–2301

    Article  CAS  Google Scholar 

  • Mahanta MJ, Bhattacharyya KG (2011) Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ Monit Assess 173:221–240

    Article  CAS  Google Scholar 

  • Markus JA, Mcbratney AB (1996) An urban soil study: heavy metals in Glebe, Australia. Aust J Soil Res 34:453–465

    Article  CAS  Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5:239–465

    Article  Google Scholar 

  • Matheron G (1982) Pour une analyse krigeante des données régionalisées. Rapport N-732. Centre de Géostatistiques, École des Mines de Paris, Fontainebleau

  • McGrath D, Zhang C, Carton OT (2004) Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ Pollut 127:239–248

    Article  CAS  Google Scholar 

  • Mirsal IA (2008) Soil pollution. Origin, monitoring & remediation, 2nd edn. Springer, Berlin

    Google Scholar 

  • Norra S, Weber A, Kramar U, Stüben D (2001) Mapping of trace metals in urban soils. J Soils Sediments 1:77–97

    Article  CAS  Google Scholar 

  • Odewande AA, Abimbola AF (2008) Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environ Geochem Health 30:243–254

    Article  CAS  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space (PDF). Philos Mag 2:559–572

    Article  Google Scholar 

  • Queiroz JCB, Sturaro JR, Saraiva ACF, Barbosa Landim PM (2008) Geochemical characterization of heavy metal contaminated area using multivariate factorial kriging. Environ Geol 55:95–105

    Article  CAS  Google Scholar 

  • Reis AP, Menezes de Almeida L, Ferreira da Silva E, Sousa AJ, Patinha C, Fonseca EC (2007) Assessing the geochemical inherent quality of natural soils in the Douro river basin for grapevine cultivation using data analysis and geostatistics. Geoderma 141:370–383

    Article  CAS  Google Scholar 

  • Saby N, Arrouays D, Boulonne L, Jolivet C, Pochot A (2006) Geostatistical assessment of Pb in soil around Paris, France. Sci Total Environ 367:212–221

    Article  CAS  Google Scholar 

  • Sánchez-Marañón M, García PA, Huertas R, Hernández-Andrés J, Melgosa M (2011) Influence of natural daylight on soil color description: assessment using a color-appearance model. Soil Sci Soc Am J 75:984–993

    Article  Google Scholar 

  • Schröder W, Pesch R, Schmidt G (2004) Soil monitoring in Germany. J Soils Sediments 4:49–58

    Article  Google Scholar 

  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut 156:251–260

    Article  CAS  Google Scholar 

  • Sollitto D, Romic M, Castrignanò A, Romic D, Bakic H (2010) Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena 80:182–194

    Article  CAS  Google Scholar 

  • Ure AM, Berrow ML (1982) The elemental constituents of soils. In: Bowen HJM (ed) Environmental chemistry. Royal Society of Chemistry, London, pp 94–202

    Chapter  Google Scholar 

  • Verly G (1983) The Multigaussian approach and its application to the estimation of local reserves. Math Geol 15:259–286

    Article  Google Scholar 

  • Visconti F, de Paz JM, Rubio JL (2009) Principal component analysis of chemical properties of soil saturation extracts from an irrigated Mediterranean area: implications for calcite equilibrium in soil solutions. Geoderma 151:407–416

    Article  CAS  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Google Scholar 

  • Wang Z, Darilek JL, Zhao Y, Huang B, Sun W (2011) Defining soil geochemical baseline at small scales using geochemical common factors and soil organic matter as normalizers. J Soils Sediments 11:3–14

    Article  CAS  Google Scholar 

  • Webster R (2001) Statistics to support soil research and their presentation. Eur J Soil Sci 52:331–340

    Article  CAS  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Webster R, Atteia O, Dubois JP (1994) Coregionalization of trace metals in the soil in the Swiss Jura. Eur J Soil Sci 45:205–218

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Zawadzki J, Fabijańczyk P (2008) The geostatistical reassessment of soil contamination with lead in metropolitan Warsaw and its vicinity. Int J Environ Pollut 35:1–12

    Article  CAS  Google Scholar 

  • Zheng YM, Chen TB, He JZ (2008) Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. J Soils Sediments 8:51–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers of this paper for providing constructive comments which have contributed to the improvement of the published version. The authors thank Emilio Catalano for his valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Buttafuoco.

Additional information

Responsible editor: Willie Peijnenburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guagliardi, I., Buttafuoco, G., Cicchella, D. et al. A multivariate approach for anomaly separation of potentially toxic trace elements in urban and peri-urban soils: an application in a southern Italy area. J Soils Sediments 13, 117–128 (2013). https://doi.org/10.1007/s11368-012-0583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0583-0

Keywords

Profiles

  1. Gabriele Buttafuoco