Skip to main content
Log in

Suitability of granular carbon as an anode material for sediment microbial fuel cells

  • SEDIMENTS, SEC 5 • SEDIMENT MANAGEMENT • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Sediment microbial fuel cells (S-MFCs) are bio-electrochemical devices that are able to oxidize organic matter directly into harvestable electrical power. The flux of organic matter into the sediment is rather low; therefore, other researchers have introduced plants for a continuous supply of organic matter to the anode electrode. Until now only interconnected materials have been considered as anode materials in S-MFCs. Here, granular carbon materials were investigated for their suitability as an anode material in S-MFCs.

Materials and methods

Laboratory microcosms with eight different electrode materials (granules, felts and cloths) were examined with controlled organic matter addition under brackish conditions. Current density, organic matter removal and microbial community composition were monitored using 16S rRNA gene PCR followed by denaturing gradient gel electrophoresis (DGGE). The main parameters investigated were the influence of the amount of electrode material applied to the sediment, the size of the granular material and the electrode configuration.

Results and discussion

Felt material had an overall superior performance in terms of current density per amount of applied electrode material; felt and granular anode obtained similar current densities (approx. 50–60 mA m−2), but felt materials required 29 % less material to be applied. Yet, when growing plants, granular carbon is more suited because it is considered to restore, upon disturbance, the electrical connectivity within the anode compartment. Small granules (0.25–0.5 mm) gave the highest current density compared to larger granules (1–5 mm) of the same material. Granules with a rough surface had a better performance compared to smooth granules of the same size. The different granular materials lead to a selection of distinct microbial communities for each material, as shown by DGGE.

Conclusions

Granular carbon is suitable as an anode material for S-MFCs. This opens the possibility for application of S-MFCs in cultivated areas. In a wider context, the application of granular carbon electrodes can also be an option for in situ bioremediation of contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15

    CAS  Google Scholar 

  • Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99:8895–8902

    Article  CAS  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913

    Article  CAS  Google Scholar 

  • Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89:303–314

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  CAS  Google Scholar 

  • De Schamphelaire L, van den Bossche L, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058

    Article  Google Scholar 

  • Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99:8887–8894

    Article  CAS  Google Scholar 

  • Helder M, Strik DPBTB, Hamelers HVM, Kuhn AJ, Blok C, Buisman CJN (2010) Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101:3541–3547

    Article  CAS  Google Scholar 

  • Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190

    Article  CAS  Google Scholar 

  • Jian-hai L, Yu-bin F, Jia L, An-long L, Dong-dong M (2009) Effect of electrode shape on power and internal resistance in benthic microbial fuel cell material on marine sediment. Adv Mat Res 79–82:2195–2198

    Google Scholar 

  • Kaku N, Yonezawa N, Kodama Y, Watanabe K (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79:43–49

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Mohan SV, Srikanth S, Raghuvulu SV, Mohanakrishna G, Kumar AK, Sarma PN (2009) Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics. Bioresour Technol 100:2240–2246

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: Pinto R, Varanini Z, Nanipieri P (eds) The rhizosphere. Books in soils, plants, and the environment. CRC, Boca Raton, pp 23–72

    Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  • Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523

    CAS  Google Scholar 

  • Read S, Marzorati M, Guimaraes BCM, Boon N (2011) Microbial resource management revisited: successful parameters and new concepts. Appl Microbiol Biotechnol 90:861–871

    Article  CAS  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195

    Article  CAS  Google Scholar 

  • Scott K, Cotlarciuc I, Hall D, Lakeman JB, Browning D (2008) Power from marine sediment fuel cells: the influence of anode material. J Appl Electrochem 38:1313–1319

    Article  CAS  Google Scholar 

  • Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energ Res 32:870–876

    Article  CAS  Google Scholar 

  • Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575

    Article  CAS  Google Scholar 

  • Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86:973–981

    Article  CAS  Google Scholar 

  • Tripisciano C, Kozynchenko OP, Linsberger I, Phillips GJ, Howell CA, Sandeman SR, Tennison SR, Mikhalovsky SV, Weber V, Falkenhagen D (2011) Activation-dependent adsorption of cytokines and toxins related to liver failure to carbon beads. Biomacromolecules 12:3733–3740

    Article  CAS  Google Scholar 

  • Williams KH, Nevin KP, Franks A, Englert A, Long PE, Lovley DR (2010) Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 44:47–54

    Article  CAS  Google Scholar 

  • Yuan Y, Zhou SG, Zhuang L (2010) A new approach to in situ sediment remediation based on air-cathode microbial fuel cells. J Soils Sediments 10:1427–1433

    Article  CAS  Google Scholar 

  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received funding from the European Community Seventh Framework Programme FP7/2007-2013 under grant agreement no. 226532. The authors gratefully acknowledge Matthieu Picot, University de Rennes 1, for help with SEM analysis. Tim Lacoere is thanked for help with the molecular biological analysis. The authors thank Jo de Vrieze and Carlos Zamalloa for helpful suggestions and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Additional information

Responsible editor: Gijs Breedveld

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arends, J.B.A., Blondeel, E., Tennison, S.R. et al. Suitability of granular carbon as an anode material for sediment microbial fuel cells. J Soils Sediments 12, 1197–1206 (2012). https://doi.org/10.1007/s11368-012-0537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0537-6

Keywords

Navigation