Skip to main content
Log in

Ecotoxicological assessment of road runoff residues for aquatic surface ecosystems in a scenario of reuse

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Road runoff residues are often reused in road and civil works building. Although the physicochemical and ecotoxicological characteristics of these materials are known, no extensive ecotoxicological studies have been carried out on the leachates obtained from these residues once they have been spread and exposed to rainfall. This study was aimed at assessing the ecotoxicological risks for lentic aquatic ecosystems receiving the leachates of road runoff residues, either raw or treated, through granulometric sieving.

Materials and methods

Thirteen raw materials were collected in sites located in various parts of France, a majority of urban retention ponds with high traffic roads. Three of them were granulometrically sieved (fractions, 2–30 mm, 60 μm to 2 mm, and <60 μm). The materials were characterized on a physicochemical level and submitted to a leaching test reflecting the transfer of pollutants from the solid phase to the aqueous phase when the reused materials are exposed to rainfall. The contents in trace metallic elements of leachates were determined. Ecotoxicological single-species tests and microcosm assays were then carried out on the leachates to predict the potential effects of the leachates reaching a close aquatic lentic ecosystem.

Results and discussion

Twelve samples out of 22 displayed at least one metal content higher than ecotoxic thresholds. For the samples that were submitted to granulometric sieving, the finest fraction (<60 μm) was also the most contaminated. The metal concentrations of leachates, compared with that of sediments, showed that only a low fraction (most often <0.1%) of sediment metals was mobilised by leaching. However, all leachates showed at least one metal concentration > predicted no effect concentration (PNEC). No acute toxicity was found at concentration <20% leachate (v:v). Among the 15 nonfiltered leachates, only two were toxic to some organisms of microcosms; the others were not toxic at the tested concentration of 10%.

Conclusions

The results obtained on 13 raw materials and 2 valorizable granulometric fractions suggest absence of acute ecotoxicity and absence of chronic ecotoxicity (21-day exposure) at dilution factor >10. The analysis of metallic contents and bioassay results lead concordantly to propose a no observed effect concentration close to 1% (v:v). On an ecotoxicological point of view, the granulometric fractioning does not seem to produce valorizable fractions, which would be systematically innocuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AFNOR (1992) Déchets—essai de lixiviation. Norme NF X 31–210

  • AFNOR (1998) Qualité de l'eau—dosage de huit éléments métalliques (Mn, Fe, Co, Ni, Cu, Zn, Ag, Pb) par spectrométrie d'absorption atomique dans la flamme. Norme NF T 90–112

  • Bishop CA, Struger J, Shirose LJ, Dunn L, Campbell GD (2000) Contamination and wildlife communities in stormwater detention ponds in Guelph and the Greater Toronto area, Ontario, 1997 and 1998. Part II—Contamination and biological effects of contamination. Water Qual Res J Can 35:437–474

    CAS  Google Scholar 

  • Casey RE, Simon JA, Atueyi S, Snodgrass JW, Karouna-Reiner N, Sparling DW (2006) Temporal trends of trace metals in sediment and invertebrates from stormwater management ponds. Water Air Soil Pollut 178:69–77

    Article  Google Scholar 

  • Clément B, Triffault-Bouchet G, Lottmann A, Carbonel J (2005) Are percolates released from solid wastes incineration bottom ashes safe for lentic ecosystems? A laboratory ecotoxicological approach based on 100 litre indoor microcosms. Aquat Ecosyst Health Manag 8:427–439

    Article  Google Scholar 

  • Colandini V (1997) Effets des structures réservoirs à revêtement poreux sur les eaux pluviales: qualité des eaux et devenir des métaux lourds. Thèse de doctorat, Université de Pau et des pays de l'Adour

  • Datry T, Malard F, Vitry L, Hervant F, Gibert J (2003) Solute dynamics in the bed sediments of a stormwater infiltration basin. J Hydrol 273:217–233

    Article  CAS  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Article  Google Scholar 

  • Durand C (2003) Caractérisation physicochimique des produits de l'assainissement pluvial. Origine et devenir des métaux traces et des polluants organiques. Thèse doctorat: chimie organique, minérale, industrielle et chimie environnementale, Université de Poitiers, p 248

  • Fernández C, Carbonell G, Tarazona JV (2004) Scientific bases for the development of water quality objectives in Spain. Ecotoxicological criteria. Spanish J Agricult Res 2:361–367

    Google Scholar 

  • Grathwohl P, Susset B (2009) Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Manage 29:2681–2688

    Article  CAS  Google Scholar 

  • Ineris (2003) Plomb et ses dérivés, Fiche de données toxicologiques et environnementales des substances chimiques, version no. 2-1/2003 ERIS-DRC-01-25590-ETSC-APi/SD–no. 00df257, 83 p

  • Ineris (2005a) Chrome et ses dérivés, Fiche de données toxicologiques et environnementales des substances chimiques, version no. 2-4-février 05, INERIS–DRC-01-05590-00DF253.doc, 80 p

  • Ineris (2005b) Cuivre, Fiche de données toxicologiques et environnementales des substances chimiques, version no. 1-5-février 05, INERIS–DRC-02-25590-02DF54.doc, 66 p

  • Ineris (2005c) Cadmium et ses dérivés, Fiche de données toxicologiques et environnementales des substances chimiques, version no. 2-3-février 05, INERIS–DRC-01-25590-00DF249.doc, 60 p

  • Ineris (2005d) Zinc et ses dérivés, Fiche de données toxicologiques et environnementales des substances chimiques, version no. 2-2mars 2005, INERIS–DRC-01-25590-00DF259.doc, 69 p

  • Ineris (2006) Nickel et ses dérivés, Fiche de données toxicologiques et environnementales des substances chimiques, version "no. 1-2 juillet 2006, INERIS–DRC-02-25590-02DF44.doc, 71 p

  • Karouna-Renier NK, Sparling DW (2001) Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environ Pollut 112:183–192

    Article  CAS  Google Scholar 

  • Kempf S (2001) Les enjeux liés à la gestion et à la valorisation des boues et sédiments d'assainissement pluvial routier et urbain. Mémoire de DESS, Université de Bordeaux, 75 p

  • Lee PK, Touray JC, Baillif P, Ildefonse JP (1997) Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Sci Tot Envir 201:1–15

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • OECD (1993) Algal growth inhibition test, #201, adopted 7 june 1984, OECD Guideline for testing of chemicals

  • ONR (2001) Les déchets, enquête 2000. Bassins et fossés, propretés des aires d'arrêt et des abords de la route, les produits de démolition, 36 p

  • Pagotto C (1999) Etude sur l'émission et le transfert dans les eaux et les sols des éléments traces métalliques et des hydrocarbures en domaine routier. Thèse de doctorat. Université de Poitiers

  • Pétavy F (2007) Traitement et valorisation des sédiments de l'assainissement pluvial, Thèse de doctorat en mécanique, thermique et génie civil, Ecole centrale de Nantes et Université de Nantes, 317 p

  • Pétavy F, Ruban V, Conil P (2009) Treatment of stormwater sediments: efficiency of an attrition scrubber—laboratory and pilot-scale studies. Chem Engin J 145:475–482

    Article  Google Scholar 

  • Scher O, Thiéry A (2005) Odonata, Amphibia and environmental characteristics in motorway stormwater retention ponds (Southern France). Hydrobiol 551:237–251

    Article  Google Scholar 

  • Scher O, Chavaren P, Despreaux M, Thiéry A (2005) Highway stormwater detention ponds as biodiversity islands? Arch Sci 57(2–3):123–132

    Google Scholar 

  • SETRA (1995) Produits de curage des fossés et des bassins routiers—quantification, caractérisation et filières d'élimination. Rapport d'étude, juillet 1995, 57 p

  • Snodgrass JW, Casey RE, Joseph D, Simon JA (2008) Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environ Pollut 154:291–297

    Article  CAS  Google Scholar 

  • Stead-Dexter K, Ward NI (2004) Mobility of heavy metals within freshwater sediments affected by motorway stormwater. Sci Tot Environ 334–335:271–277

    Article  Google Scholar 

  • Stotz G, Krauth K (1994) The pollution of effluents from previous pavements of an experimental highway section: first results. Sci Tot Environ 146–147:465–470

    Article  Google Scholar 

  • Taub FB (1989) Standardized aquatic microcosms. Environ Sci Technol 23:1064–1066

    Article  Google Scholar 

  • Triffault-Bouchet G, Clément B, Blake G (2005) Assessment of contaminated sediments with an indoor freshwater/sediment microcosm assay. Environ Toxicol Chem 24:2243–2253

    Article  CAS  Google Scholar 

  • Verrhiest G, Cortes S, Clément B, Montuelle B (2002) Chemical and bacterial changes during laboratory conditioning of formulated and natural sediments. Chemosphere 46:961–974

    Article  CAS  Google Scholar 

  • Wik A, Lycken J, Dave G (2008) Sediment quality assessment of road runoff detention systems in Sweden and the potential contribution of tire wear. Water Air Soil Pollut 194:301–314

    Article  CAS  Google Scholar 

  • Zanders JM (2005) Road sediment: characterization and implications for the performance of vegetated strips for treating road run-off. Sci Tot Environ 339:41–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Agence de l'Eau Seine-Normandie for its financial support, Véronique Ruban (LCPC Nantes) as coordinator of the scientific programme “characterization and management of road runoff residues”, François Pétavy (LCPC Nantes) for providing raw and treated sediments, and Thérèse Bastide (L.S.E.) for the chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Clément.

Additional information

Responsible editor: Ying Ouyang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clément, B., Raevel, V. & Renard, O. Ecotoxicological assessment of road runoff residues for aquatic surface ecosystems in a scenario of reuse. J Soils Sediments 10, 1255–1266 (2010). https://doi.org/10.1007/s11368-010-0226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0226-2

Keywords

Navigation