Skip to main content

Advertisement

Log in

Drivers of mountain landscape change during the twenty-first century

  • SEDIMENT RESPONSE TO CATCHMENT DISTURBANCES • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Introduction

Twenty-first century mountain landscapes are evolving under the globally scaled controls of hydroclimate and the spatially and temporally discontinuous impacts of human activity and tectonic plate movements. Attention is drawn to the difficulty of comparing the effectiveness of the three drivers of change (tectonics, using relief as a surrogate, hydroclimate, and human activity) because of their differing temporal rhythms. The direct role of human activity in landscape modification both in terms of land degradation and landscape enhancement is increasingly dominant.

Conclusions

Examples drawn from seven different mountain landscapes lead to the conclusion that only the polar mountain landscapes can be effectively interpreted under the ruling hypothesis that climate is the dominant driver of mountain landscape change. An emphasis on climate as the fundamental driver of mountain landscape change in the twenty-first century is inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawala S (ed) (2007) Climate change in the European Alps: adapting winter tourism and natural hazard management. OECD, Paris

    Google Scholar 

  • Alford D, Cunha SF, Ives JD (2000) Mountain hazards and development assistance, Lake Sarez, Pamir Mountains, Tajikistan. Mt Res Dev 20:20–23

    Article  Google Scholar 

  • Aulitzky H, Heuberger H, Patzelt G (1994) Mountain hazard geomorphology of Tyrol and Vorarlberg, Austria. Mt Res Dev 14:273–305

    Article  Google Scholar 

  • Barry RG (1992) Mountain weather and climate. Routledge, London

    Google Scholar 

  • Barry RG (1994) Past and potential future changes in mountain environments: a review. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, pp 3–33

    Chapter  Google Scholar 

  • Barsch D, Caine N (1984) The nature of mountain geomorphology. Mt Res Dev 4:287–298

    Article  Google Scholar 

  • Battarbee RW (2002) Comparing paleolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–179

    Article  Google Scholar 

  • Bätzing W (2003) Die Alpen Geshichte und Zukunft einer europäischen Kulturlandschaft. CHBeck, Munich

    Google Scholar 

  • Beniston M (2000) Environmental change in mountains and uplands. Arnold, London

    Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Bourgeois WW (2003) Future forest management in British Columbia. BC J Ecosystems Management 4:1–10

    Google Scholar 

  • Caillon N, Severinghaus JP, Jouzel J, Barnola JM, Kang J, Lipenkov VY (2003) Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science 299:1728–1731

    Article  CAS  Google Scholar 

  • Church M, Slaymaker O (1989) Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337:452–454

    Article  Google Scholar 

  • Dadson SJ, Hovius N, Chen H, Dade B, Hsieh MC, Willett SB, Hu JC, Horng MJ, Chen MC, Stark CP, Lague D, Lin JC (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426:648–651

    Article  CAS  Google Scholar 

  • Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Change 36:253–279

    Article  Google Scholar 

  • Dowdeswell JA, Hagen JO (2004) Arctic ice caps and glaciers. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere. Cambridge University Press, Cambridge, pp 527–558

    Chapter  Google Scholar 

  • Eckholm EP (1975) The deterioration of mountain environments. Science 189:764–770

    Article  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, pp 82–115

    Google Scholar 

  • FAO (2007) State of the world's forests 2007. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Fischer AG (1969) Geologic time-distance rates: the Bubnov unit. Geol Soc Am Bull 80:549–551

    Article  Google Scholar 

  • Fischer H, Wahlen M, Smith J, Mastroianni D, Deck B (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283:1712–1714

    Article  CAS  Google Scholar 

  • Getahun A (1984) Stability and instability of mountain ecosystems in Ethiopia. Mt Res Dev 4:39–44

    Article  Google Scholar 

  • Haeberli W (1994) Accelerated glacier and permafrost changes in the Alps. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, pp 91–107

    Chapter  Google Scholar 

  • Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265

    Google Scholar 

  • Hagen JO, Melvold K, Pinglot F, Dowdeswell JA (2003) On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arct Antarct Alp Res 35:264–270

    Article  Google Scholar 

  • Harden CP (2001) Soil erosion and sustainable mountain development. Mt Res Dev 21:77–83

    Article  Google Scholar 

  • Hewitt K (2002) Postglacial landform and sediment associations in a landslide-fragmented river system: the Transhimalayan Indus streams, central Asia. In: Hewitte K et al (eds) Landscapes of transition. Kluwer Academic, Dordrecht, pp 63–91

    Google Scholar 

  • Hinderer M (2001) Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodin Acta 14:231–263

    Article  Google Scholar 

  • Hodge RA (2004) Mining's seven questions to sustainability: from mitigating impacts to encouraging contribution. Episodes 27:1–8

    Google Scholar 

  • Hofstätter M, Formayer H and Haas P (2009) Snow reliability in ski resorts considering artificial snow making. Geophys Res Abstracts, 11, EGU 2009-9678-1

  • Hovius N (1998) Controls on sediment supply by large rivers. In: Shanley KW, McCabe DJ (eds) Relative role of eustasy, climate and tectonics in continental rocks. Soc Econ Paleont Mineral, Tucson, pp 3–16

  • Huddleston BA, Ataman B, de Sales P, Zanetti M, Bloise M, Bel J, Franceschine G, d’Ostini LF (2003) Towards a GIS-based analysis of mountain environments and populations. Working Paper #10, Environment and Natural Resources. Food and Agriculture Organization of the United Nations, Rome

  • Hurni H (1988) Degradation and conservation of the resources in the Ethiopian highlands. Mt Res Dev 8:123–130

    Article  Google Scholar 

  • Hurni H (1999) Sustainable management of natural resources in African and Asian mountains. Ambio 28:382–389

    Google Scholar 

  • Inbar M, Llerena CA (2000) Erosion processes in high mountain agricultural terraces in Peru. Mt Res Dev 20:72–79

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Working group 1, Assessment report 4, IPCC. Solomon S et al (eds) Cambridge University Press, Cambridge and New York

  • Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869

    Article  CAS  Google Scholar 

  • Kerr RA, Stone R (2009) A human trigger for the great quake of Sichuan? Science 323:322

    Article  CAS  Google Scholar 

  • Kirby E, Whipple K, Harkins N (2008) Topography reveals seismic hazard. Nat Geosci 1:485–488

    Article  CAS  Google Scholar 

  • Knight J, Harrison S (2009) Sediments and future climate. Nat Geosci 2:230

    Article  CAS  Google Scholar 

  • Koppes MN, Montgomery DR (2009) The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nat Geosci 2:644–647

    Article  CAS  Google Scholar 

  • Körner C, Ohsawa M (2005) Mountain systems. In: Millennium ecosystem assessment: ecosystems and human well-being, vol. 1. Island Press, Washington, DC, pp 681–716

  • Lambin EF, Geist JA (eds) (2006) Land use and land cover change: local processes and global impacts. Springer Verlag, Berlin

    Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S et al (eds) Climate change 2007; the physical science basis, Working Group I, IPCC. Cambridge University Press, Cambridge and New York, pp 339–383

    Google Scholar 

  • Marston RA (2008) Land, life and environmental change in mountains. Annals Assoc Am Geogr 98:507–520

    Article  Google Scholar 

  • Matsuoka N (2003) Contemporary permafrost and periglaciation in Asian high mountains: an overview. Z Geomorphol Supp 130:145–166

    Google Scholar 

  • Menounos B (2002) Climate and fine sediment transport linkages, Coast Mountains, BC. Dissertation, The University of British Columbia

  • Menounos B, Clague J, Gilbert R, Slaymaker O (2005) Environmental reconstruction from a varve network in the southern Coast Mountains, BC, Canada. Holocene 15:1163–1171

    Article  Google Scholar 

  • Messerli B (1973) Problems of vertical and horizontal arrangements in the high mountains of the extreme arid zone (central Sahara). Arct Alp Res 5:139–147

    Google Scholar 

  • Messerli B, Ives JD (eds) (1997) Mountains of the world: a global priority. Parthenon, London

    Google Scholar 

  • Messerli B, Grosjean M, Hofer T, Nunez L, Pfister C (2000) From nature-dominated to human-dominated environmental changes. In: Alverson KD et al (eds) Past global changes and their significance for the future. Elsevier, Amsterdam, pp 459–479

    Google Scholar 

  • Meybeck M, Green P, Vörösmarty CJ (2001) A new typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt Res Dev 21:34–45

    Article  Google Scholar 

  • Millones JO (1982) Patterns of land use and associated environmental problems of the central Andes. Mt Res Dev 2:49–61

    Article  Google Scholar 

  • Mitchell JM Jr (1976) An overview of climatic variability and its causal mechanisms. Quaternary Res 6:481–493

    Article  Google Scholar 

  • Montgomery DR (2007) Dirt: the erosion of civilizations. University of California Press, Berkeley

    Google Scholar 

  • Morris GL, Fan J (1998) Reservoir sedimentation handbook. McGraw-Hill, New York

    Google Scholar 

  • Munro RN, Deckers J, Grove AT, Haile M, Poesen J, Nyssen J (2008) Soil and erosion features of the central plateau region of Tigray: learning from photo monitoring with 30 years interval. Catena 75:55–64

    Article  Google Scholar 

  • Nogues-Bravo D, Araujo MB, Errea MP, Martinez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st century. Glob Environ Change 17:420–428

    Article  Google Scholar 

  • Nyssen J, Haile M, Naudts J, Munro N, Poesen J, Moeyersons J, Frankl A, Deckers J, Pankhurst R (2008) Desertification? Northern Ethiopia re-photographed after 140 years. Sci Total Environ 407:2749–2755

    Google Scholar 

  • Owen LA (2004) Cenozoic evolution of global mountain systems. In: Owens PN, Slaymaker O (eds) Mountain geomorphology. Arnold, London, pp 33–58

    Google Scholar 

  • Owens PN, Slaymaker O (eds) (2004) Mountain geomorphology. Arnold, London

    Google Scholar 

  • Parminter J (1991) Fire history and effects on vegetation in three biogeoclimatic zones of BC. USDA For Serv Gen Tech Report SE69 Asheville, North Carolina, pp 263–272

  • Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi:10.1029/2008GL034026

    Article  Google Scholar 

  • Ramankutty N, Foley JA, Norman J, McSweeney K (2002) The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob Ecol Biogeogr 11:377–392

    Article  Google Scholar 

  • Rindfuss RR, Walsh SJ, Turner BL, Fox J, Mishra V (2004) Developing a science of land change: challenges and methodological issues. Proc Nat Acad Sci USA 101:13976–13981

    Article  CAS  Google Scholar 

  • Ruddiman WF (2005) How did humans first alter climate? Sci Am 292:46–53

    Article  Google Scholar 

  • Ryder JM (1998) Geomorphological processes in the alpine areas of Canada: the effects of climate change and their impacts on human activities. Geol Surv Can Bull 524:1–44

    Google Scholar 

  • Sarmiento FO (2000) Breaking mountain paradigms: ecological effects on human impacts in man-aged Tropandean landscapes. Ambio 29:423–431

    Google Scholar 

  • Sidle RC, Burt TP (2009) Temperate forests and rangelands. In: Slaymaker O et al (eds) Geomorphology and global environmental change. Cambridge University Press, Cambridge, pp 321–343

    Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction and land use. American Geophysical Union, Washington, DC

    Google Scholar 

  • Slaymaker O (1990) Climate change and erosion processes in mountain regions of western Canada. Mt Res Dev 10:171–182

    Article  Google Scholar 

  • Slaymaker O, Spencer T, Embleton-Hamann C (2009) Geomorphology and global environmental change. Cambridge University Press, Cambridge

    Google Scholar 

  • Summerfield MA (1987) Global tectonics and landform development. Progr Phys Geog 11:384–397

    Article  Google Scholar 

  • Summerfield MA (ed) (2000) Geomorphology and global tectonics. Wiley, Chichester

    Google Scholar 

  • Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rates in world drainage basins. J Geophys Res 99(B7):13871–1383

    Article  Google Scholar 

  • Tiffen M, Mortimore M, Gichuki F (1994) More people less erosion: environmental recovery in Kenya. Wiley, Chichester

    Google Scholar 

  • Tranum S, Lieber A (2009) On the roof of the world. Outpost September/October, pp 43–49

  • Troll C (1973) High mountain belts between the polar caps and the equator: their definition and lower limit. Arctic Alpine Res 5:A19–A27

    Google Scholar 

  • Tsonis AA, Swanson KL, Kravtsov S (2007) A new dynamical mechanism for major climatic shifts. Geophys Res Lett 34:L13705. doi:10.1029/2007GLO30288

    Article  Google Scholar 

  • Turner BL II (2006) Land change as a forcing function in global environmental change. In: Geist HJ (ed) Our Earth's changing land: an encyclopedia of land-use and land-cover change, vol 1. Greenwood Press, Westport, pp xxv–xxxii

    Google Scholar 

  • Turner BL II, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB (1990) The earth as transformed by human action. Cambridge University Press, Cambridge

    Google Scholar 

  • von Humboldt A (1845–1862) Kosmos. Entwurf einer physischen Weltbeschreibung, Id 1–5, Stuttgart

  • Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nat Geosci 2:97–104

    Article  CAS  Google Scholar 

  • Whipple KX, Kirby E, Brocklehurst SH (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature 401:39–43

    Article  CAS  Google Scholar 

  • Wilkinson BH, McElroy BJ (2007) The impact of humans on continental erosion and sedimentation. Geol Soc Amer Bull 119:140–156

    Article  Google Scholar 

  • Worku M (2007) The missing links: poverty, population and the environment in Ethiopia. Focus on Pop, Environ Security 14:1–8

    Google Scholar 

  • Zeitler PK, Chamberlain CP, Smith HA (1993) Synchronous anatexis, metamorphism and rapid denudation at Nanga Parbat, Pakistan Himalaya. Geol 21:347–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Slaymaker.

Additional information

Responsible editor: Philip N. Owens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaymaker, O. Drivers of mountain landscape change during the twenty-first century. J Soils Sediments 10, 597–610 (2010). https://doi.org/10.1007/s11368-010-0194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0194-6

Keywords

Navigation