Journal of Soils and Sediments

, Volume 10, Issue 3, pp 389–399 | Cite as

Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach

  • Mariana BartzkeEmail author
  • Vera Delov
  • Petra Stahlschmidt-Allner
  • Bernhard Allner
  • Jörg Oehlmann



The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD.

Materials and methods

Sediment and macrozoobenthos samples were taken from tributaries of the rivers Fulda and Lahn. Sediments were characterized regarding particle size, carbon, heavy metals, and polyaromatic hydrocarbon content. Macroinvertebrate samples were taken via multi-habitat sampling. The fish embryo toxicity test with D. rerio was conducted as a contact assay on the basis of DIN 38415-6.

Results and discussion

The integrated assessment indicated a significant influence of heavy metals and carbon content on macroinvertebrate communities. The bioaccessibility of sediment pollutants were clearly demonstrated by the FTI, which showed a wide range of adverse effects. A significant linear relationship between metals and the FTI was detected. However, there was no statistically significant evidence that macroinvertebrate communities were affected by the hydromorphological quality elements at the sampling sites.


The new scheme for the assessment of fish embryo toxicity test was successfully applied. The results suggest that sediment compounds impact macroinvertebrate communities and early development of fish. It demonstrates that the quality of sediments should be evaluated on a routine basis as part of an integrated river assessment.


Bioassay Danio rerio Fish teratogenicity index Macroinvertebrates Metals Sediment toxicity 



The authors are particularly grateful for the support of sediment analysis by Heike Heidenreich and Gerlinde Liepelt from the International Graduate School Zittau as well as for collaborative support by Simone Galluba and Maren Heß from Goethe University Frankfurt am Main and Dietmar Bernauer. Moreover, the authors wish to thank Mirco Weil from ECT Oekotoxikologie GmbH for support with ammonia toxicity testing.

Supplementary material

11368_2009_170_MOESM1_ESM.pdf (330 kb)
Supplement 1 (PDF 330 kb)


  1. AQEM (2006) Operational taxa list (Status March 2006). Available via Accessed 25 June 2008
  2. Asterics version 3.1.1 (2008) AQEM/STAR Ecological River Classification System. Wageningen Software Labs, Wageningen, Netherlands; IRV-Software, Wien, Austria, Available via Accessed 25 Jun 2008
  3. Bass JAB, Blust R, Clarke RT, Corbin TA, Davison W, De Schamphelaere KAC, Janssen CR, Kalis EJJ, Kelly MG, Kneebone NT, Lawlor AJ, Lofts S, Temminghoff EJM, Thacker SA, Tipping E, Vincent CD, Warnken KW, Zhang H (2008) Environmental quality standards for trace metals in the aquatic environment. Technical report. Environment Agency, Bristol, p 177Google Scholar
  4. Braunbeck T, Böttcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. ALTEX 22(Supl. 2/05):87–102Google Scholar
  5. Bury NR, Grosell MG (2003) Waterborne iron acquisition by a freshwater teleost fish, zebrafish Danio rerio. J Exp Biol 206:3529–3535CrossRefGoogle Scholar
  6. Chapman PM (1986) The distribution of metals in sewage sludge and their fate after dumping at sea. Sci Total Environ 48:1–11CrossRefGoogle Scholar
  7. Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97(98):815–825Google Scholar
  8. Coquery M, Welbourn PM (1995) The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Res 29:2094–2102CrossRefGoogle Scholar
  9. Dave G, Xiu R (1991) Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol 21:126–134CrossRefGoogle Scholar
  10. DIN 38406 E29 (1996) Bestimmung von 61 Elementen durch Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS), In: Fachgruppe Wasserchemie der GDCh und Normenausschuss Wasserwesen (NAW) im DIN Deutsches Institut für Normung e.V. (ed) Deutsche Verfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Band 1. VCH, Weinheim; Beuth, BerlinGoogle Scholar
  11. DIN 38414 S21 (1996) Bestimmung von 6 polyzyklischen aromatischen Kohlenwasserstoffen (PAK) mittels Hochleistungs-Flüssigkeitschromatographie (HPLC), In: Fachgruppe Wasserchemie der GDCh und Normenausschuss Wasserwesen (NAW) im DIN Deutsches Institut für Normung e.V. (ed) Deutsche Verfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Band 1. VCH, Weinheim; Beuth, BerlinGoogle Scholar
  12. DIN 38414 S3 (1985) Bestimmung des Glührückstandes und des Glühverlustes der Trockenmasse eines Schlammes. In: Fachgruppe Wasserchemie der GDCh und Normenausschuss Wasserwesen (NAW) im DIN Deutsches Institut für Normung e.V. (ed) Deutsche Verfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Band 1. VCH, Weinheim; Beuth, BerlinGoogle Scholar
  13. DIN 38415-6 (2001) Bestimmung der nicht akut giftigen Wirkung von Abwasser auf die Entwicklung von Fischeiern über Verdünnungsstufen, In: Fachgruppe deutscher Chemiker in Gemeinschaft mit dem Normenausschuss Wasserwesen (NAW) im DIN (ed) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Band 6. VHC, Weinheim; Beuth, Berlin, pp 13Google Scholar
  14. European Union (2000) Directive 2000/60/EG of the European Parliament and of the Council of 23 October 2000. Establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327/1, 22.12.2002. Available via Accessed 10 Dec 2007
  15. Hessian Ministry of Agriculture and Forests (2000) Gewässerstrukturgüte in Hessen. Available via, 53 pp. Accessed 3 July 2008
  16. Fracacio R, Verani NF, Espindola GEL, Rocha O, Rigolin-Sa O, Andrade CA (2003) Alterations on growth and gill morphology of Danio rerio (Pisces, Ciprinidae) exposed to the toxic sediments. Brazilian Arch Biol Technol 46:685–695Google Scholar
  17. Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day embryo–larval bioassay to assess toxicity of chemicals. Ecotoxicol Environ Saf 63:253–267CrossRefGoogle Scholar
  18. Hallare AV, Kosmehl T, Schulze T, Hollert H, Köhler HR, Triebskorn R (2005) Assessing contamination levels of Laguna Lake sediments (Phillippines) using a contact assay with zebrafish (Danio rerio) embryos. Sci Total Environ 347:254–271CrossRefGoogle Scholar
  19. Hart BT (1982) Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiol 91:299–313Google Scholar
  20. Hernandez PP, Moreno V, Olivari FA, Allende ML (2006) Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hearing Res 213:1–10CrossRefGoogle Scholar
  21. HMULV – Hessisches Ministerium für Umwelt, Landwirtschaft und Verkehr (2004) Bestandsaufnahme Hessen. Allgemeine Beschreibung Mittelrhein, Teil Hessen. Available via Accessed 12 June 2008
  22. HMULV – Hessisches Ministerium für Umwelt, Landwirtschaft und Verkehr (2007a) Fachliche Umsetzung der Wasserrahmenrichtlinie in Hessen. Überwachung und Darstellung des Zustandes der oberirdischen Gewässer, des Grundwassers und der Schutzgebiete. Eckpunkte zum Monitoring und zur Bewertung im Rahmen der Überwachung von Fließgewässern in Hessen. Available via, 49 pp. Accessed 25 May 2008
  23. HMULV – Hessisches Ministerium für Umwelt, Landwirtschaft und Verkehr (2007b) Wasserrahmenrichtlinien-Viewer (Stand Oktober 2007). Available via Accessed 18 Jun 2008
  24. HMULV – Hessisches Ministerium für Umwelt, Landwirtschaft und Verkehr (2007c) Gewässerstrukturgüteinformationssystem – GESIS (Stand 2007). Available via = 9ae1b06d5a35c2ff0c7731d8733582c4. Accessed 18 June 2008
  25. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207CrossRefGoogle Scholar
  26. Iwasaki Y, Kagaya T, Miyamoto K, Matsuda H (2009) Effects of heavy metals on riverine benthic macroinvertebrate assemblages with reference to potential food availability for drift-feeding fishes. Environ Toxicol Chem 28:354–363CrossRefGoogle Scholar
  27. LAWA – Länderarbeitsgemeinschaft Wasser (1998) Beuteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland. Chemische Gewässergüteklassifikation, Berlin, Kulturbuchverlag, p 35Google Scholar
  28. Lee BG, Griscom SB, Lee JS, Choi HJ, Koh CH, Luoma SN, Fisher NS (2000) Influence of dietary uptake and reactive sulfides on metal biovailability from aquatic sediments. Science 287:282–284CrossRefGoogle Scholar
  29. Lin JG, Chen SY (1998) The relationship between adsorption of heavy metal and organic matter in river sediments. Environ Int 24:345–352CrossRefGoogle Scholar
  30. Lorenz A, Hering D, Feld CK, Rolauffs P (2004) A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516:107–127CrossRefGoogle Scholar
  31. Meier C, Böhmer J, Biss R, Feld C, Haase P, Lorenz A, Rawer C, Jost P, Schindehütte K, Schöll F, Sundermann A, Zenker A, Hering D (2006a) Weiterentwicklung und Anpassung des nationalen Bewertungssystems für Makrozoobenthos an neue internationale Vorgaben. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Essen. Available via, 198 pp. Accessed 25 June 2008
  32. Meier C, Haase P, Rolauffs P, Schindehütte K, Schöll F, Sundermann A, Hering D (2006b) Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EG-Wasserrahmenrichtlinie. Available via, 79 pp. Accessed 25 June 2008
  33. Moolenaar SW (1999) Heavy metal balances, part I. General aspects of cadmium, copper, zinc, and lead balance studies in agro-ecosystems. J Industrial Ecol 2:45–60CrossRefGoogle Scholar
  34. Nagel R (2002) DarT: The embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19. Suppl 1(02):38–48Google Scholar
  35. OECD 210 – Organization for Economic Cooperation and Development (1992) OECD Guideline for testing of chemicals. Fish, Early-life Stage Toxicity Test, Juli 1992. ParisGoogle Scholar
  36. Ofenböck T, Moog O, Gerritsen J, Barbour M (2004) A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Hydrobiologia 516:215–268CrossRefGoogle Scholar
  37. Paris-Palacios S, Biagianti-Risbourg S, Vernet G (2000) Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquatic Toxicol 50:109–124CrossRefGoogle Scholar
  38. Pottgiesser T, Sommerhäuser M (2004) Short names of the biocoenotically relevant stream types for Germany Available via, 1 pp. Accessed 3 June 2008
  39. Rieß MH, Wefers H, Weigel H (1997) Ökotoxikologische Bewertung von Sedimentschadstoffen. Ableitung von Orientierungswerten und Klassifizierung unter Bodenschutzaspekten. Umweltwiss Schadstoff Forsch 9:201–209CrossRefGoogle Scholar
  40. Sanrini JZ, Bianchini A, Trindade GS, Nery LEM, Marins LFF (2009) Reactive oxygen species generation and expression of DNA repair-related genes after copper exposure in zebrafish (Danio rerio) ZFL cells. Aquatic Toxicol. doi: 10.1016/j.aquatox.2009.02.016 Google Scholar
  41. Scheil V, Köhler H-R (2009) Influence of nickel chloride, chlorpyrifos, and imidacloprid in combination with different temperatures on the embryogenesis of the zebrafish Danio rerio. Arch Environ Contam Toxicol 56:238–243CrossRefGoogle Scholar
  42. Slaga TJ, Fischer SM, Weeks CE, Klein-Szanto AJP, Reiners J (2004) Studies on the mechanisms involved in multistage carcinogenesis in mouse skin. J Cell Biochem 18:99–119CrossRefGoogle Scholar
  43. Ulrich M, Schulze T, Leist E, Glaß B, Maier M, Maier D, Braunbeck T, Hollert H (2002) Ökotoxikologische Untersuchung von Sedimenten und Schwebstoffen: Abschätzung des Gefährdungspotentials für Trinkwasser und Korrelation verschiedener Expositionspfade (Acetonischer Extract, Natives Sediment) im Bakterienkontakttest und Fischeitest. Umweltwiss Schadstoff Forsch 14:132–137CrossRefGoogle Scholar
  44. van Leeuwen CJ, Vermeire TG (2007) Risk assessment of chemicals: an introduction, 2nd edn. Springer, Dordrecht, p 314Google Scholar
  45. Völker J, Borchardt D (2007) Hydromorphologische Bedingungen und deren Wechselwirkungen mit der Makrozoobenthosbesiedlung. Ergebnisse und Schlussfolgerungen für die Umsetzung der WRRL in Bezug auf die Monitoringplanung und im Hinblick auf lokale, regionale und überregionale Umweltziele. Final report. Available via, 91pp. Accessed 21 July 2008
  46. Voslarova E, Pistekova V, Svobodova Z (2006) Nitrite toxicity to Danio rerio: effects of fish age and chloride concentrations. Acta Vet Brno 75:107–113CrossRefGoogle Scholar
  47. Wachs B (1991) Ökobewertung der Schwermetallbelastung von Fließgewässern. In: Mühlhölzl W (ed) Aktuelle chemische und biologische Wasser- und Schlammanalytik: Anwendung, Ergebnisse und deren ökologische BewertungGoogle Scholar
  48. Wharton G, Gilvear DJ (2006) River restoration in the UK: meeting the dual needs of the European union water framework directive and flood defence? Int J River Basin Manage 4:1–12Google Scholar
  49. Winner RW, Boesel MW, Farrell MP (1980) Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Can J Fish Aquat Sci 37:647–655CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mariana Bartzke
    • 1
    • 2
    • 3
    Email author
  • Vera Delov
    • 1
    • 2
    • 4
  • Petra Stahlschmidt-Allner
    • 2
  • Bernhard Allner
    • 2
  • Jörg Oehlmann
    • 1
  1. 1.Department Aquatic EcotoxicologyGoethe University Frankfurt am MainFrankfurtGermany
  2. 2.Gobio GmbHAarbergen/KettenbachGermany
  3. 3.Department Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research, UFZLeipzigGermany
  4. 4.EcotoxicologyFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany

Personalised recommendations