Abstract
Purpose
The Peruvian coast is known for its low water availability and high water demand, which is mainly satisfied by groundwater sources. The current study develops regionalized water scarcity characterization factors (CFs) based on the available water remaining (AWARE) method for eight selected watersheds located along the hyper-arid Peruvian coast. Furthermore, the paper proposes water scarcity CFs for groundwater in six watersheds, which are not available in current methods.
Methods
The regionalization of water scarcity CFs along the Peruvian coast was based on the following: (i) national delineation of hydrological units (HUs), (b) use of primary data on water availability and demand provided by official water balance reports and national databases, (c) use of the ecological flow values recommended by national authorities, and (d) proposal of specific water scarcity CFs for groundwater. Moreover, the results of the updated CFs were compared to those from the original CFs from AWARE. A sensitivity analysis, including recalculated CFs based on future climate change scenarios, was also provided. Thereafter, water scarcity impacts for grape and avocado production available in the scientific literature were recalculated based on previous studies with the new CFs.
Results and discussion
Results revealed significant differences between updated and original water scarcity CFs in both geographical and temporal (i.e., monthly) terms. Hence, updated CFs showed that all watersheds selected experience high levels of water scarcity, especially from June to October, a more realistic scenario than that showed with original water scarcity CFs when confronted to water availability values. Meanwhile, water scarcity CFs for groundwater showed intense pressure all year round for the three main sources of groundwater (i.e., Chillon, Rimac, and Lurin aquifers) that provide water to the city of Lima, whereas only one groundwater watershed showed low water scarcity (i.e., Mala-Omas aquifer).
Conclusions
Updated water scarcity CFs provide a watershed-based quantification of water scarcity in the hyper-arid Peruvian coast, which we consider more realistic as compared to the original CFs. Moreover, the water scarcity CFs proposed for groundwater allow estimating the pressure over aquifers in a higher level of disaggregation, which can be used to monitor the overexploitation of groundwater sources in an area that is highly dependent on these water sources.
This is a preview of subscription content, access via your institution.








Data availability
All data generated during this study are included in this published article and its supplementary information files.
References
Abraham EM, Rodríguez MD, Rubio MC, et al (2020) Disentangling the concept of “South American Arid Diagonal.” J Arid Environ 175:104089. https://doi.org/10.1016/j.jaridenv.2019.104089
Akbar H, Nilsalab P, Silalertruksa T, Gheewala SH (2022) Comprehensive review of groundwater scarcity, stress and sustainability index-based assessment. Groundw Sustain Dev 18:100782. https://doi.org/10.1016/j.gsd.2022.100782
Alcamo J, Döll P, Henrichs T et al (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337. https://doi.org/10.1623/hysj.48.3.317.45290
ANA (2008) Delimitación y codificación de las unidades hidrográficas del Perú
ANA (2013) Plan Nacional de Recursos Hídricos del Perú: Memoria 2013. Aut Nac del Agua 255
ANA (2015a) Evaluación de recursos hídricos en la cuenca Mala, Omas y Chilca
ANA (2015b) Evaluación de Recursos Hídricos en la Cuenca Pativilca. 438
ANA (2016a) Observatorio del Agua. https://snirh.ana.gob.pe/observatorioSNIRH/#. Accessed 19 Apr 2022
ANA (2016b) Resolución Jefatural N° 154–2016-ANA. Metodología para determinar caudales ecológicos
ANA (2016c) Estado Situacional de los Acuíferos Rímac y Chillón. 1–14
ANA (2019a) Diagnóstico inicial para el Plan de gestión de recursos hídricos en el ámbito de las cuencas Chillón, Rímac, Lurín y Chilca. Repos Inst - ANA
ANA (2019b) Estudio hidrológico de la unidad hidrográfica cañete
ANA (2019c) Resolucion Jefatural Nro. 267 - 2019c - ANA. Lineamientos Generales para Determinar Caudales Ecologicos. 16
ANA (2022) Plan Estratégico Institucional PEI 2023 – 2027
Andrade EP, de Araújo Nunes AB, de Freitas AK et al (2020) Water scarcity in Brazil: part 1—regionalization of the AWARE model characterization factors. Int J Life Cycle Assess 25:2342–2358. https://doi.org/10.1007/s11367-019-01643-5
Anton DJ (1993) Thirsty cities: urban environments and water supply in Latin America. Ottawa
AQUAFONDO (2016) Estudio de Riesgos Hídricos y Vulnerabilidad del Sector Privado en Lima Metropolitana y Callao en un Contexto de Cambio Climático
Asurza-Véliz FA, Lavado-Casimiro WS (2020) Regional parameter estimation of the SWAT model: methodology and application to river basins in the Peruvian pacific drainage. Water (switzerland) 12:1–25. https://doi.org/10.3390/w12113198
Bontinck PA, Grant T, Kaewmai R, Musikavong C (2021) Recalculating Australian water scarcity characterisation factors using the AWARE method. Int J Life Cycle Assess 26:1687–1701. https://doi.org/10.1007/s11367-021-01952-8
Boulay AM, Bare J, Benini L et al (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378. https://doi.org/10.1007/s11367-017-1333-8
Boulay AM, Lenoir L, Manzardo A (2019) Bridging the data gap in the water scarcity footprint by using crop-specific AWARE factors. Water (Switzerland) 11:. https://doi.org/10.3390/W11122634
Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res 48(8)
Congreso de la República (2009) Ley No 29338. Que aprueba la “Ley de los Recursos Hídricos”. Diaro Of El Peru
Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277. https://doi.org/10.1007/s10040-002-0188-6
Damonte G, Boelens R (2019) Hydrosocial territories, agro-export and water scarcity: capitalist territorial transformations and water governance in Peru’s coastal valleys. Water Int 44:206–223. https://doi.org/10.1080/02508060.2018.1556869
Del Bene D, Scheidel A, Temper L (2018) More dams, more violence? A global analysis on resistances and repression around conflictive dams through co-produced knowledge. Sustain Sci 13:617–633. https://doi.org/10.1007/s11625-018-0558-1
Diario Oficial El Peruano (2022) Perú, primer exportador mundial de uvas en el 2021. https://elperuano.pe/noticia/139989-peru-primer-exportador-mundial-de-uvas-en-el-2021
Dinar A, Tieu A, Huynh H (2019) Water scarcity impacts on global food production. Glob Food Sec 23:0–40
Dolganova I, Mikosch N, Berger M et al (2019) The water footprint of European agricultural imports: hotspots in the context ofwater scarcity. Resources 8:. https://doi.org/10.3390/resources8030141
Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38:8–1–8–10. https://doi.org/10.1029/2001wr000355
Drenkhan F, Carey M, Huggel C et al (2015) The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wires Water 2:715–733. https://doi.org/10.1002/wat2.1105
EPM Information Development Team (2012) Crystal Ball user’s guide, 11.1.2
Esteve-Llorens X, Ita-Nagy D, Parodi E et al (2022) Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: a case study for green asparagus and avocado. Sci Total Environ 818:151686. https://doi.org/10.1016/j.scitotenv.2021.151686
Finogenova N, Dolganova I, Berger M et al (2019) Water footprint of German agricultural imports: local impacts due to global trade flows in a fifteen-year perspective. Sci Total Environ 662:521–529. https://doi.org/10.1016/j.scitotenv.2019.01.264
Gejl RN, Bjerg PL, Henriksen HJ et al (2018) Integrating groundwater stress in life-cycle assessments – an evaluation of water abstraction. J Environ Manage 222:112–121. https://doi.org/10.1016/j.jenvman.2018.05.058
Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science (80- ) 344:1109–1113. https://doi.org/10.1126/science.1248361
Hommes L, Boelens R (2017) Urbanizing rural waters: rural-urban water transfers and the reconfiguration of hydrosocial territories in Lima. Polit Geogr 57:71–80. https://doi.org/10.1016/j.polgeo.2016.12.002
Hybel AM, Godskesen B, Rygaard M (2015) Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources. J Environ Manage 160:90–97. https://doi.org/10.1016/j.jenvman.2015.06.016
IBICT (2019) Recomendação de modelos de avaliação de impacto do ciclo de vida para o contexto brasileiro
INEI (2017a)a Peru: Crecimiento y distribucion de la poblacion total 2017a Poblacion censada mas poblacion omitida J Chem Inf Model 53 76
INEI (2017b) Censos Nacionales 2017b: XII de Población, VII de Vivienda y III de Comunidades Indígenas
IPCC (2021) Climate change 2021. Phys Sci Basis Contrib Work Gr 1 to Sixth Assess Rep Intergov Panel Clim Chang In Press
IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assess- ment Report of the Intergovernmental Panel on Climate Change
ISO (2006) ISO 14040:2006. Environmental management – life cycle assessment –principles and framework. 54
Ita-Nagy D, Vázquez-Rowe I, Kahhat R (2022) Developing a methodology to quantify mismanaged plastic waste entering the ocean in coastal countries. J Ind Ecol 1–15. https://doi.org/10.1016/j.optmat.2011.11.002
Jasechko S, Birks J, Gleeson T et al (2014) The pronounced seasonality of global groundwater recharge. Water Resour Res 50:8845–8867. https://doi.org/10.1002/2013WR014979.Reply
Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Simmons CT (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. J Hydrol 535:235–255. https://doi.org/10.1016/j.jhydrol.2016.01.083
Larrea-Gallegos G, Vázquez-Rowe I, Wiener H, Kahhat R (2019) Applying the technology choice model in consequential life cycle assessment: a case study in the Peruvian agricultural sector. J Ind Ecol 23:601–614. https://doi.org/10.1111/jiec.12812
Lashkari A, Irannezhad M, Liu J, Schulthess U (2022) Cascading socio-environmental sustainability risks of agricultural export miracle in Peru. Environ Sustain 5:255–259. https://doi.org/10.1007/s42398-022-00233-w
Llauca H, Lavado-Casimiro W, Montesinos C et al (2021) PISCO_HyM_GR2M: a model of monthly water balance in Peru (1981–2020). Water (switzerland) 13:1–19. https://doi.org/10.3390/w13081048
Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:1–7. https://doi.org/10.1126/sciadv.1500323
MINAGRI (2010) Decreto Supremo N° 001–2010-AG Reglamento de la Ley de Recursos Hidricos (Ley No 29338). 1–81
MINAM (2011) La desertificación en el Perú: cuarta comunicación nacional del Perú a la Convención de la Lucha contra la Desertificación y la Sequía
MINAM (2021) Plan Nacional de Adaptación al Cambio Climático del Perú: un insumo para la actualización de la Estrategia Nacional ante el Cambio Climático. 1–611
Ministerio de Agricultura y Riego (2020) Análisis de Mercado Palta 2015–2019. Minist Agric y Riego 1–52
Ministerio de Agricultura y Riego (2021) Decreto Supremo que aprueba la Política Nacional Agraria 2021–2030
Ministerio de Comercio Exterior y Turismo (2016) Análisis Integral de la Logística en el Perú - Producto UVA
Ministerio de Economía y Finanzas del Perú (2019) Plan Nacional de Infraestructura para la Competitividad. Miniesterio Econ y Finanz 1–85
Mouelhi S, Michel C, Perrin C, Andréassian V (2006) Stepwise development of a two-parameter monthly water balance model. J Hydrol 318:200–214. https://doi.org/10.1016/j.jhydrol.2005.06.014
Naumann G, Alfieri L, Wyser K et al (2018) Global changes in drought conditions under different levels of warming. Geophys Res Lett 45:3285–3296. https://doi.org/10.1002/2017GL076521
OECD/FAO (2019) OECD-FAO agricultural outlook 2019–2028 - special focus: Latin America
Olegário K, Pereira Andrade E, Coelho Sampaio AP et al (2022) Water scarcity footprint of cocoa irrigation in Bahia. Rev Ambient e Agua 17:. https://doi.org/10.4136/1980-993X
Ortega G, Arias PA, Villegas JC et al (2021) Present-day and future climate over central and South America according to CMIP5/CMIP6 models. Int J Climatol 41:6713–6735. https://doi.org/10.1002/joc.7221
Paredes-Beltran B, Sordo-Ward A, De-Lama B, Garrote L (2021) A continental assessment of reservoir storage and water availability in South America. Water (switzerland) 13:1–24. https://doi.org/10.3390/w13141992
Pastor AV, Ludwig F, Biemans H et al (2014) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Syst Sci 18:5041–5059. https://doi.org/10.5194/hess-18-5041-2014
Payen S, Basset-Mens C, Núñez M et al (2016) Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration. Int J Life Cycle Assess 21:577–594. https://doi.org/10.1007/s11367-016-1040-x
Pfister S, Boulay AM, Berger M et al (2017) Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA.” Ecol Indic 72:352–359. https://doi.org/10.1016/j.ecolind.2016.07.051
PNUD (2013) Informe sobre Desarrollo Humano Perú 2013
Rachid G, Alameddine I, El-Fadel M (2021) Management of saltwater intrusion in data-scarce coastal aquifers: impacts of seasonality, water deficit, and land use. Water Resour Manag 35:5139–5153. https://doi.org/10.1007/s11269-021-02991-4
Rau P, Bourrel L, Labat D et al (2019) Assessing multidecadal runoff (1970–2010) using regional hydrological modelling under data and water scarcity conditions in Peruvian Pacific catchments. Hydrol Process 33:20–35. https://doi.org/10.1002/hyp.13318
Richey A, Thomas B, Hui LM et al (2015) Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour Res 51:5198–5216. https://doi.org/10.1002/2015WR017351
Rockström J, Steffen W, Noone K, et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:. https://doi.org/10.5751/ES-03180-140232
Rosa L, Chiarelli DD, Sangiorgio M et al (2020) Potential for sustainable irrigation expansion in a 3 °c warmer climate. Proc Natl Acad Sci U S A 117:29526–29534. https://doi.org/10.1073/pnas.2017796117
Salameh E (2008) Over-exploitation of groundwater resources and their environmental and socio-economic implications: the case of Jordan. Water Int 33:55–68. https://doi.org/10.1080/02508060801927663
Schmied HM, Eisner S, Franz D et al (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18:3511–3538. https://doi.org/10.5194/hess-18-3511-2014
Schwarz J, Mathijs E (2017) Globalization and the sustainable exploitation of scarce groundwater in coastal Peru. J Clean Prod 147:231–241. https://doi.org/10.1016/j.jclepro.2017.01.067
SENAMHI (2015) Regionalización y Caracterización de Sequías en el Perú. SENAMHI (servicio Nac Meteorol e Hidrol Del Perú) 1:34
SENAMHI (2016) Vulnerabilidad Climática De Los Recursos Hídricos En Las Cuencas De Los Ríos Chillón, Rímac, Lurín Y Parte Alta Del Mantaro
Shimizu T (2022) The growth of the fruit and vegetable export industry in Peru, Springer B
Sieber J (2015) WEAP Water Evaluation and Planning System. Environment 1789
Siebert S, Döll P (1999) The global map of irrigation areas. 70
Steffen W, Richardson K, Rockström J, et al (2015) Planetary boundaries: guiding human development on a changing planet. Science (80- ) 347:. https://doi.org/10.1126/science.1259855
Torre A, Vázquez-Rowe I, Parodi E, Kahhat R (2021) Wastewater treatment decentralization: Is this the right direction for megacities in the Global South? Sci Total Environ 778:. https://doi.org/10.1016/j.scitotenv.2021.146227
UN (2022) The United Nations World Water Development Report 2022: Groundwater: making the invisible visible. Paris
UNEP/SETAC (2016) Global guidance for life cycle impact assessment indicators – volume 1
Van Beek LPH, Bierkens MFP (2008) The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. The Netherlands, Utrecht
Vázquez-Rowe I, Cáceres AL, Torres-García JR et al (2017a) Life Cycle Assessment of the production of pisco in Peru. J Clean Prod 142:4369–4383. https://doi.org/10.1016/j.jclepro.2016.11.136
Vázquez-Rowe I, Kahhat R, Lorenzo-Toja Y (2017b) Natural disasters and climate change call for the urgent decentralization of urban water systems. Sci Total Environ 605–606:246–250. https://doi.org/10.1016/j.scitotenv.2017.06.222
Vázquez-Rowe I, Torres-García JR, Cáceres AL et al (2017c) Assessing the magnitude of potential environmental impacts related to water and toxicity in the Peruvian hyper-arid coast: a case study for the cultivation of grapes for pisco production. Sci Total Environ 601–602:532–542. https://doi.org/10.1016/j.scitotenv.2017.05.221
Wada Y (2016) Modeling groundwater depletion at regional and global scales: present state and future prospects. Surv Geophys 37:419–451. https://doi.org/10.1007/s10712-015-9347-x
Wada Y, Van Beek LPH, Van Kempen CM et al (2010) Global depletion of groundwater resources. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL044571
Wang R, Zimmerman JB, Wang C et al (2017) Freshwater vulnerability beyond local water stress: heterogeneous effects of water-electricity nexus across the continental United States. Environ Sci Technol 51:9899–9910. https://doi.org/10.1021/acs.est.7b01942
Wu H, Chen J, Xu J et al (2019) Effects of dam construction on biodiversity: a review. J Clean Prod 221:480–489. https://doi.org/10.1016/j.jclepro.2019.03.001
Acknowledgements
We would like to thank the European Research Executive Agency for funding the BAMBOO Project (101059379), as well as Drs. Ramzy Kahhat, Karin Bartl, and Gustavo Larrea-Gallegos for valuable scientific exchange. Dr. Joan Sanchez-Matos wishes to thank the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) from the Peruvian government for funding his postdoctoral contract PE501080172-2022-PROCIENCIA.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Communicated by Ulrike Eberle.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sanchez-Matos, J., Andrade, E.P. & Vázquez-Rowe, I. Revising regionalized water scarcity characterization factors for selected watersheds along the hyper-arid Peruvian coast using the AWARE method. Int J Life Cycle Assess 28, 1447–1465 (2023). https://doi.org/10.1007/s11367-023-02195-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11367-023-02195-5