Skip to main content

Revising regionalized water scarcity characterization factors for selected watersheds along the hyper-arid Peruvian coast using the AWARE method



The Peruvian coast is known for its low water availability and high water demand, which is mainly satisfied by groundwater sources. The current study develops regionalized water scarcity characterization factors (CFs) based on the available water remaining (AWARE) method for eight selected watersheds located along the hyper-arid Peruvian coast. Furthermore, the paper proposes water scarcity CFs for groundwater in six watersheds, which are not available in current methods.


The regionalization of water scarcity CFs along the Peruvian coast was based on the following: (i) national delineation of hydrological units (HUs), (b) use of primary data on water availability and demand provided by official water balance reports and national databases, (c) use of the ecological flow values recommended by national authorities, and (d) proposal of specific water scarcity CFs for groundwater. Moreover, the results of the updated CFs were compared to those from the original CFs from AWARE. A sensitivity analysis, including recalculated CFs based on future climate change scenarios, was also provided. Thereafter, water scarcity impacts for grape and avocado production available in the scientific literature were recalculated based on previous studies with the new CFs.

Results and discussion

Results revealed significant differences between updated and original water scarcity CFs in both geographical and temporal (i.e., monthly) terms. Hence, updated CFs showed that all watersheds selected experience high levels of water scarcity, especially from June to October, a more realistic scenario than that showed with original water scarcity CFs when confronted to water availability values. Meanwhile, water scarcity CFs for groundwater showed intense pressure all year round for the three main sources of groundwater (i.e., Chillon, Rimac, and Lurin aquifers) that provide water to the city of Lima, whereas only one groundwater watershed showed low water scarcity (i.e., Mala-Omas aquifer).


Updated water scarcity CFs provide a watershed-based quantification of water scarcity in the hyper-arid Peruvian coast, which we consider more realistic as compared to the original CFs. Moreover, the water scarcity CFs proposed for groundwater allow estimating the pressure over aquifers in a higher level of disaggregation, which can be used to monitor the overexploitation of groundwater sources in an area that is highly dependent on these water sources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All data generated during this study are included in this published article and its supplementary information files.


  • Abraham EM, Rodríguez MD, Rubio MC, et al (2020) Disentangling the concept of “South American Arid Diagonal.” J Arid Environ 175:104089.

  • Akbar H, Nilsalab P, Silalertruksa T, Gheewala SH (2022) Comprehensive review of groundwater scarcity, stress and sustainability index-based assessment. Groundw Sustain Dev 18:100782.

  • Alcamo J, Döll P, Henrichs T et al (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337.

    Article  Google Scholar 

  • ANA (2008) Delimitación y codificación de las unidades hidrográficas del Perú

  • ANA (2013) Plan Nacional de Recursos Hídricos del Perú: Memoria 2013. Aut Nac del Agua 255

  • ANA (2015a) Evaluación de recursos hídricos en la cuenca Mala, Omas y Chilca

  • ANA (2015b) Evaluación de Recursos Hídricos en la Cuenca Pativilca. 438

  • ANA (2016a) Observatorio del Agua. Accessed 19 Apr 2022

  • ANA (2016b) Resolución Jefatural N° 154–2016-ANA. Metodología para determinar caudales ecológicos

  • ANA (2016c) Estado Situacional de los Acuíferos Rímac y Chillón. 1–14

  • ANA (2019a) Diagnóstico inicial para el Plan de gestión de recursos hídricos en el ámbito de las cuencas Chillón, Rímac, Lurín y Chilca. Repos Inst - ANA

  • ANA (2019b) Estudio hidrológico de la unidad hidrográfica cañete

  • ANA (2019c) Resolucion Jefatural Nro. 267 - 2019c - ANA. Lineamientos Generales para Determinar Caudales Ecologicos. 16

  • ANA (2022) Plan Estratégico Institucional PEI 2023 – 2027

  • Andrade EP, de Araújo Nunes AB, de Freitas AK et al (2020) Water scarcity in Brazil: part 1—regionalization of the AWARE model characterization factors. Int J Life Cycle Assess 25:2342–2358.

    Article  CAS  Google Scholar 

  • Anton DJ (1993) Thirsty cities: urban environments and water supply in Latin America. Ottawa

  • AQUAFONDO (2016) Estudio de Riesgos Hídricos y Vulnerabilidad del Sector Privado en Lima Metropolitana y Callao en un Contexto de Cambio Climático

  • Asurza-Véliz FA, Lavado-Casimiro WS (2020) Regional parameter estimation of the SWAT model: methodology and application to river basins in the Peruvian pacific drainage. Water (switzerland) 12:1–25.

    Article  Google Scholar 

  • Bontinck PA, Grant T, Kaewmai R, Musikavong C (2021) Recalculating Australian water scarcity characterisation factors using the AWARE method. Int J Life Cycle Assess 26:1687–1701.

    Article  Google Scholar 

  • Boulay AM, Bare J, Benini L et al (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378.

    Article  Google Scholar 

  • Boulay AM, Lenoir L, Manzardo A (2019) Bridging the data gap in the water scarcity footprint by using crop-specific AWARE factors. Water (Switzerland) 11:.

  • Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res 48(8)

  • Congreso de la República (2009) Ley No 29338. Que aprueba la “Ley de los Recursos Hídricos”. Diaro Of El Peru

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277.

    Article  Google Scholar 

  • Damonte G, Boelens R (2019) Hydrosocial territories, agro-export and water scarcity: capitalist territorial transformations and water governance in Peru’s coastal valleys. Water Int 44:206–223.

    Article  Google Scholar 

  • Del Bene D, Scheidel A, Temper L (2018) More dams, more violence? A global analysis on resistances and repression around conflictive dams through co-produced knowledge. Sustain Sci 13:617–633.

    Article  Google Scholar 

  • Diario Oficial El Peruano (2022) Perú, primer exportador mundial de uvas en el 2021.

  • Dinar A, Tieu A, Huynh H (2019) Water scarcity impacts on global food production. Glob Food Sec 23:0–40

  • Dolganova I, Mikosch N, Berger M et al (2019) The water footprint of European agricultural imports: hotspots in the context ofwater scarcity. Resources 8:.

  • Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38:8–1–8–10.

  • Drenkhan F, Carey M, Huggel C et al (2015) The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wires Water 2:715–733.

    Article  Google Scholar 

  • EPM Information Development Team (2012) Crystal Ball user’s guide, 11.1.2

  • Esteve-Llorens X, Ita-Nagy D, Parodi E et al (2022) Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: a case study for green asparagus and avocado. Sci Total Environ 818:151686.

  • Finogenova N, Dolganova I, Berger M et al (2019) Water footprint of German agricultural imports: local impacts due to global trade flows in a fifteen-year perspective. Sci Total Environ 662:521–529.

    Article  CAS  Google Scholar 

  • Gejl RN, Bjerg PL, Henriksen HJ et al (2018) Integrating groundwater stress in life-cycle assessments – an evaluation of water abstraction. J Environ Manage 222:112–121.

    Article  CAS  Google Scholar 

  • Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science (80- ) 344:1109–1113.

  • Hommes L, Boelens R (2017) Urbanizing rural waters: rural-urban water transfers and the reconfiguration of hydrosocial territories in Lima. Polit Geogr 57:71–80.

    Article  Google Scholar 

  • Hybel AM, Godskesen B, Rygaard M (2015) Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources. J Environ Manage 160:90–97.

    Article  Google Scholar 

  • IBICT (2019) Recomendação de modelos de avaliação de impacto do ciclo de vida para o contexto brasileiro

  • INEI (2017a)a Peru: Crecimiento y distribucion de la poblacion total 2017a Poblacion censada mas poblacion omitida J Chem Inf Model 53 76

  • INEI (2017b) Censos Nacionales 2017b: XII de Población, VII de Vivienda y III de Comunidades Indígenas

  • IPCC (2021) Climate change 2021. Phys Sci Basis Contrib Work Gr 1 to Sixth Assess Rep Intergov Panel Clim Chang In Press

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assess- ment Report of the Intergovernmental Panel on Climate Change

  • ISO (2006) ISO 14040:2006. Environmental management – life cycle assessment –principles and framework. 54

  • Ita-Nagy D, Vázquez-Rowe I, Kahhat R (2022) Developing a methodology to quantify mismanaged plastic waste entering the ocean in coastal countries. J Ind Ecol 1–15.

  • Jasechko S, Birks J, Gleeson T et al (2014) The pronounced seasonality of global groundwater recharge. Water Resour Res 50:8845–8867.

    Article  Google Scholar 

  • Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Simmons CT (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. J Hydrol 535:235–255.

  • Larrea-Gallegos G, Vázquez-Rowe I, Wiener H, Kahhat R (2019) Applying the technology choice model in consequential life cycle assessment: a case study in the Peruvian agricultural sector. J Ind Ecol 23:601–614.

    Article  CAS  Google Scholar 

  • Lashkari A, Irannezhad M, Liu J, Schulthess U (2022) Cascading socio-environmental sustainability risks of agricultural export miracle in Peru. Environ Sustain 5:255–259.

    Article  Google Scholar 

  • Llauca H, Lavado-Casimiro W, Montesinos C et al (2021) PISCO_HyM_GR2M: a model of monthly water balance in Peru (1981–2020). Water (switzerland) 13:1–19.

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:1–7.

    Article  Google Scholar 

  • MINAGRI (2010) Decreto Supremo N° 001–2010-AG Reglamento de la Ley de Recursos Hidricos (Ley No 29338). 1–81

  • MINAM (2011) La desertificación en el Perú: cuarta comunicación nacional del Perú a la Convención de la Lucha contra la Desertificación y la Sequía

  • MINAM (2021) Plan Nacional de Adaptación al Cambio Climático del Perú: un insumo para la actualización de la Estrategia Nacional ante el Cambio Climático. 1–611

  • Ministerio de Agricultura y Riego (2020) Análisis de Mercado Palta 2015–2019. Minist Agric y Riego 1–52

  • Ministerio de Agricultura y Riego (2021) Decreto Supremo que aprueba la Política Nacional Agraria 2021–2030

  • Ministerio de Comercio Exterior y Turismo (2016) Análisis Integral de la Logística en el Perú - Producto UVA

  • Ministerio de Economía y Finanzas del Perú (2019) Plan Nacional de Infraestructura para la Competitividad. Miniesterio Econ y Finanz 1–85

  • Mouelhi S, Michel C, Perrin C, Andréassian V (2006) Stepwise development of a two-parameter monthly water balance model. J Hydrol 318:200–214.

    Article  Google Scholar 

  • Naumann G, Alfieri L, Wyser K et al (2018) Global changes in drought conditions under different levels of warming. Geophys Res Lett 45:3285–3296.

    Article  Google Scholar 

  • OECD/FAO (2019) OECD-FAO agricultural outlook 2019–2028 - special focus: Latin America

  • Olegário K, Pereira Andrade E, Coelho Sampaio AP et al (2022) Water scarcity footprint of cocoa irrigation in Bahia. Rev Ambient e Agua 17:.

  • Ortega G, Arias PA, Villegas JC et al (2021) Present-day and future climate over central and South America according to CMIP5/CMIP6 models. Int J Climatol 41:6713–6735.

    Article  Google Scholar 

  • Paredes-Beltran B, Sordo-Ward A, De-Lama B, Garrote L (2021) A continental assessment of reservoir storage and water availability in South America. Water (switzerland) 13:1–24.

    Article  Google Scholar 

  • Pastor AV, Ludwig F, Biemans H et al (2014) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Syst Sci 18:5041–5059.

    Article  Google Scholar 

  • Payen S, Basset-Mens C, Núñez M et al (2016) Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration. Int J Life Cycle Assess 21:577–594.

  • Pfister S, Boulay AM, Berger M et al (2017) Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA.” Ecol Indic 72:352–359.

    Article  Google Scholar 

  • PNUD (2013) Informe sobre Desarrollo Humano Perú 2013

  • Rachid G, Alameddine I, El-Fadel M (2021) Management of saltwater intrusion in data-scarce coastal aquifers: impacts of seasonality, water deficit, and land use. Water Resour Manag 35:5139–5153.

    Article  Google Scholar 

  • Rau P, Bourrel L, Labat D et al (2019) Assessing multidecadal runoff (1970–2010) using regional hydrological modelling under data and water scarcity conditions in Peruvian Pacific catchments. Hydrol Process 33:20–35.

    Article  Google Scholar 

  • Richey A, Thomas B, Hui LM et al (2015) Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour Res 51:5198–5216.

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:.

  • Rosa L, Chiarelli DD, Sangiorgio M et al (2020) Potential for sustainable irrigation expansion in a 3 °c warmer climate. Proc Natl Acad Sci U S A 117:29526–29534.

    Article  CAS  Google Scholar 

  • Salameh E (2008) Over-exploitation of groundwater resources and their environmental and socio-economic implications: the case of Jordan. Water Int 33:55–68.

    Article  Google Scholar 

  • Schmied HM, Eisner S, Franz D et al (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18:3511–3538.

    Article  Google Scholar 

  • Schwarz J, Mathijs E (2017) Globalization and the sustainable exploitation of scarce groundwater in coastal Peru. J Clean Prod 147:231–241.

    Article  Google Scholar 

  • SENAMHI (2015) Regionalización y Caracterización de Sequías en el Perú. SENAMHI (servicio Nac Meteorol e Hidrol Del Perú) 1:34

    Google Scholar 

  • SENAMHI (2016) Vulnerabilidad Climática De Los Recursos Hídricos En Las Cuencas De Los Ríos Chillón, Rímac, Lurín Y Parte Alta Del Mantaro

  • Shimizu T (2022) The growth of the fruit and vegetable export industry in Peru, Springer B

  • Sieber J (2015) WEAP Water Evaluation and Planning System. Environment 1789

  • Siebert S, Döll P (1999) The global map of irrigation areas. 70

  • Steffen W, Richardson K, Rockström J, et al (2015) Planetary boundaries: guiding human development on a changing planet. Science (80- ) 347:.

  • Torre A, Vázquez-Rowe I, Parodi E, Kahhat R (2021) Wastewater treatment decentralization: Is this the right direction for megacities in the Global South? Sci Total Environ 778:.

  • UN (2022) The United Nations World Water Development Report 2022: Groundwater: making the invisible visible. Paris

  • UNEP/SETAC (2016) Global guidance for life cycle impact assessment indicators – volume 1

  • Van Beek LPH, Bierkens MFP (2008) The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. The Netherlands, Utrecht

    Google Scholar 

  • Vázquez-Rowe I, Cáceres AL, Torres-García JR et al (2017a) Life Cycle Assessment of the production of pisco in Peru. J Clean Prod 142:4369–4383.

    Article  Google Scholar 

  • Vázquez-Rowe I, Kahhat R, Lorenzo-Toja Y (2017b) Natural disasters and climate change call for the urgent decentralization of urban water systems. Sci Total Environ 605–606:246–250.

    Article  CAS  Google Scholar 

  • Vázquez-Rowe I, Torres-García JR, Cáceres AL et al (2017c) Assessing the magnitude of potential environmental impacts related to water and toxicity in the Peruvian hyper-arid coast: a case study for the cultivation of grapes for pisco production. Sci Total Environ 601–602:532–542.

    Article  CAS  Google Scholar 

  • Wada Y (2016) Modeling groundwater depletion at regional and global scales: present state and future prospects. Surv Geophys 37:419–451.

    Article  Google Scholar 

  • Wada Y, Van Beek LPH, Van Kempen CM et al (2010) Global depletion of groundwater resources. Geophys Res Lett 37:1–5.

    Article  Google Scholar 

  • Wang R, Zimmerman JB, Wang C et al (2017) Freshwater vulnerability beyond local water stress: heterogeneous effects of water-electricity nexus across the continental United States. Environ Sci Technol 51:9899–9910.

    Article  CAS  Google Scholar 

  • Wu H, Chen J, Xu J et al (2019) Effects of dam construction on biodiversity: a review. J Clean Prod 221:480–489.

    Article  Google Scholar 

Download references


We would like to thank the European Research Executive Agency for funding the BAMBOO Project (101059379), as well as Drs. Ramzy Kahhat, Karin Bartl, and Gustavo Larrea-Gallegos for valuable scientific exchange. Dr. Joan Sanchez-Matos wishes to thank the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) from the Peruvian government for funding his postdoctoral contract PE501080172-2022-PROCIENCIA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joan Sanchez-Matos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Ulrike Eberle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 34.9 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Matos, J., Andrade, E.P. & Vázquez-Rowe, I. Revising regionalized water scarcity characterization factors for selected watersheds along the hyper-arid Peruvian coast using the AWARE method. Int J Life Cycle Assess 28, 1447–1465 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: