Skip to main content
Log in

Alignment of the life cycle initiative’s “principles for the application of life cycle sustainability assessment” with the LCSA practice: A case study review

  • LIFE CYCLE SUSTAINABILITY ASSESSMENT
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

This paper aims at assessing the alignment of eight of the Life Cycle Initiative’s ten principles for life cycle sustainability assessment (LCSA) and the LCSA practice as well as the challenges to reaching the full implementation of the principles as a basis for a harmonized framework.

Materials and methods

To understand the extent of alignment of existing LCSA studies with the principles, 193 case studies published before the Life Cycle Initiative’s ten principles’ publication were identified. Their levels of alignment were assessed against the criteria designed per principle: full, medium, or no alignment. The principles of “materiality of the system boundaries” and “consistency” could not be assessed as most studies lacked related background information; hence, no objective nor systematic criteria could be designed.

Results

The alignment of practice with the principles is variable: The vast majority of studies cover the 3 pillars (principle 3 on completeness). Principle 9 (communication of trade-offs) is well addressed in the case studies. Principles 2 (alignment with the phases of ISO 14040: 2006 standard), 4 (taking into account perspectives of key stakeholders), and 8 (transparency) were not properly addressed in a majority of case studies. Principles 1 (understanding the areas of protection and impact pathways), 5 (taking into account product utility beyond functional unit (co-benefits)), and 10 (caution when compensating negative and positive impacts) remain to be implemented as some methodological challenges have to be overcome. Principles 6 and 7 were not assessed.

Conclusions

LCSA is gaining momentum due to the communication and dissemination of LCSA among practitioners, potential users, and decision-makers in the public and private sectors. However, some key challenges remain for reaching the implementation of the principles: understanding of the inter-relationships between the three dimensions of sustainability to build impact pathways and select relevant impact categories for LCSA, guidance for communicating trade-offs and decision-making based on LCSA, and generalizing the (open) access to publications and related supplementary information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The case studies’ alignment assessment and results are included as supporting information in the published article and are also available from the corresponding author on reasonable request.

References

  • Aberilla JM, Gallego-Schmid A, Stamford L, Azapagic A (2020) An integrated sustainability assessment of synergistic supply of energy and water in remote communities. Sustain Prod Consum 22:1–23. https://doi.org/10.1016/j.spc.2020.01.003

    Article  Google Scholar 

  • Aboushaqrah NNM, Onat NC, Kucukvar M, Hamouda AMS, Kusakci AO, Ayvaz B (2021) Selection of alternative fuel taxis: a hybridized approach of life cycle sustainability assessment and multi-criteria decision making with neutrosophic sets. Int J Sustain Transp 0:1–14. https://doi.org/10.1080/15568318.2021.1943075

  • Abu-Rayash A, Dincer I (2019) Sustainability assessment of energy systems: a novel integrated model. J Clean Prod 212:1098–1116. https://doi.org/10.1016/j.jclepro.2018.12.090

    Article  Google Scholar 

  • Akber MZ, Thaheem MJ, Arshad H (2017) Life cycle sustainability assessment of electricity generation in Pakistan: policy regime for a sustainable energy mix. Energy Policy 111:111–126. https://doi.org/10.1016/j.enpol.2017.09.022

    Article  Google Scholar 

  • AL-Nassar F, Ruparathna R, Chhipi-Shrestha G, Haider H, Hewage K, Sadiq R (2016) Sustainability assessment framework for low rise commercial buildings: life cycle impact index-based approach. Clean Technol Environ Policy 18:2579–2590. https://doi.org/10.1007/s10098-016-1168-1

  • Aleisa E, Al-Jarallah R (2018) A triple bottom line evaluation of solid waste management strategies: a case study for an arid Gulf State. Kuwait Int J Life Cycle Assess 23:1460–1475. https://doi.org/10.1007/s11367-017-1410-z

    Article  CAS  Google Scholar 

  • Alejandrino C, Mercante I, Bovea MD (2021) Life cycle sustainability assessment: lessons learned from case studies. Environ Impact Assess Rev 87:106517. https://doi.org/10.1016/j.eiar.2020.106517

  • Amienyo D (2012) Life cycle sustainability assessment in the UK beverage sector. The University of Manchester, United Kingdom

  • Angelo ACM, Marujo LG (2019) Life cycle sustainability assessment and decision-making under uncertainties. Life Cycle Sustain Assess Decis Methodol Case Stud 253–268. https://doi.org/10.1016/B978-0-12-818355-7.00012-9

  • Arendt R, Bachmann TM, Motoshita M, Bach V, Finkbeiner M (2020) Comparison of different monetization methods in LCA: a review. Sustain 12:1–39. https://doi.org/10.3390/su122410493

    Article  Google Scholar 

  • Atilgan B, Azapagic A (2016) An integrated life cycle sustainability assessment of electricity generation in Turkey. Energy Policy 93:168–186. https://doi.org/10.1016/j.enpol.2016.02.055

    Article  Google Scholar 

  • Atilgan B, Azapagic A (2017) Energy challenges for Turkey: identifying sustainable options for future electricity generation up to 2050. Sustain Prod Consum 12:234–254. https://doi.org/10.1016/j.spc.2017.02.001

    Article  Google Scholar 

  • Aydın L, Pınar A (2018) Economic input-output life cycle sustainability assessment of electricity generation in Turkey between 1995 and 2009. Turkish J Energy Policy 3:50–69. https://dergipark.org.tr/en/pub/tjep/issue/41038/405855

  • Azapagic A, Stamford L, Youds L, Barteczko-Hibbert C (2016) Towards sustainable production and consumption: a novel DEcision-Support Framework IntegRating Economic, Environmental and Social Sustainability (DESIRES). Comput Chem Eng 91:93–103. https://doi.org/10.1016/j.compchemeng.2016.03.017

    Article  CAS  Google Scholar 

  • Azapagic, A., and Stichnothe, H. (2011) "Life cycle sustainability assessment of biofuels." Handbook of biofuels production: 37-60.

  • Aziz R, Chevakidagarn P, Danteravanich S (2016) Life cycle sustainability assessment of community composting of agricultural and agro industrial wastes. J Sustain Sci Manag 11:57–69

    CAS  Google Scholar 

  • Backes JG, Traverso M (2021a) Life cycle sustainability assessment—a survey based potential future development for implementation and interpretation. Sustainability 13(24):13688

  • Backes JG, Traverso M (2021b) Application of life cycle sustainability assessment in the construction sector: a systematic literature review. Processes 9(7):1248. https://doi.org/10.3390/pr9071248

    Article  Google Scholar 

  • Balasbaneh AT, Marsono AKB, Khaleghi SJ (2018) Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: environmental, economic and social assessment. J Build Eng 20:235–247. https://doi.org/10.1016/j.jobe.2018.07.006

  • Balasbaneh AT, Sher W (2021) Life cycle sustainability assessment analysis of different concrete construction techniques for residential building in Malaysia. Int J Life Cycle Assess 26:1301–1318. https://doi.org/10.1007/s11367-021-01938-6

    Article  CAS  Google Scholar 

  • Balasbaneh AT, Yeoh D, Zainal Abidin AR (2020) Life cycle sustainability assessment of window renovations in schools against noise pollution in tropical climates. J Build Eng 32:101784. https://doi.org/10.1016/j.jobe.2020.101784

  • Balieu R, Chen F, Kringos N (2019) Life cycle sustainability assessment of electrified road systems. Road Mater Pavement Des 20:S19–S33. https://doi.org/10.1080/14680629.2019.1588771

    Article  Google Scholar 

  • Barke A, Thies C, Popien JL, Melo SP, Cerdas F, Herrmann C, Spengler TS (2021) Life cycle sustainability assessment of potential battery systems for electric aircraft. Procedia CIRP 98:660–665. https://doi.org/10.1016/j.procir.2021.01.171

    Article  Google Scholar 

  • Barke A, Thies C, Melo SP, Cerdas F, Herrmann C, Spengler TS (2022) Comparison of conventional and electric passenger aircraft for short-haul flights – a life cycle sustainability assessment. Procedia CIRP 105:464–469. https://doi.org/10.1016/j.procir.2022.02.077

    Article  Google Scholar 

  • Barrio A, Francisco FB, Leoncini A, Wietschel L, Thorenz A (2021) Life cycle sustainability assessment of a novel bio-based multilayer panel for construction applications. Resources 10:1–21. https://doi.org/10.3390/resources10100098

    Article  Google Scholar 

  • Ben Hnich K, Martín-Gamboa M, Khila Z, Hajjaji N, Dufour J, Iribarren D (2021) Life cycle sustainability assessment of synthetic fuels from date palm waste. Sci Total Environ 796. https://doi.org/10.1016/j.scitotenv.2021.148961

  • Benoît Norris C et al (2020) Guidelines for social life cycle assessment of products and organizations 2020

  • Bhambhani A, van der Hoek JP, Kapelan Z (2022) Life cycle sustainability assessment framework for water sector resource recovery solutions: strengths and weaknesses. Resour Conserv Recycl 180:106151. https://doi.org/10.1016/j.resconrec.2021.106151

  • Blanchard BS (1978) Design and manage to life cycle cost. Dilithium Press

  • Blanchard BS, Fabrycky WJ, Fabrycky WJ (1990) Systems engineering and analysis, vol 4. Prentice hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bozhilova-Kisheva KP, Hu MM, van Roekel E, Olsen SI (2012) An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment. Int Symp Life Cycle Assess Constr Civ Eng Build 86:327–335

  • Brundtland GH (1987) Our common future—Call for action. Environ Conserv 14(4):291–294

  • Buchert T, Neugebauer S, Schenker S, Lindow K, Stark R (2015) Multi-criteria decision making as a tool for sustainable product development - benefits and obstacles. Procedia CIRP 26:70–75. https://doi.org/10.1016/j.procir.2014.07.110

    Article  Google Scholar 

  • Busset G, Belaud J, Montréjaud-Vignoles M (2014) Integrated approach for agro-process design guided by sustainability evaluation: application to the olive oil production. 5th Int Conf Eng Waste Biomass Valoris

  • Cerrato M, Miguel GS (2020) Life cycle sustainability assessment of the Spanish electricity: past, present and future projections. Energies 13. https://doi.org/10.3390/en13081896

  • Chang YJ, Schau E, Finkbeiner M (2012) Application of life cycle sustainability assessment to the bamboo and aluminum bicycle in surveying social risks of developing countries. In Proceedings of the 2nd World Sustainability Forum 953

  • Chen W, Holden NM (2018) Tiered life cycle sustainability assessment applied to a grazing dairy farm. J Clean Prod 172:1169–1179. https://doi.org/10.1016/j.jclepro.2017.10.264

    Article  Google Scholar 

  • Choi K, Lee HW, Mao Z, Lavy S, Ryoo BY (2016) Environmental, economic, and social implications of highway concrete rehabilitation alternatives. J Constr Eng Manag 142:04015079. https://doi.org/10.1061/(asce)co.1943-7862.0001063

    Article  Google Scholar 

  • Chung W, Huu N, Jeong I (2020) Comparative life cycle sustainability assessment of enriched uranium supply scenarios. Trans Korean Nucl Soc Virt Spring Meet 2–5

  • Ciroth A, Finkbeiner M, Traverso M, Hildenbrand J, Walter K, Mazijn B, Prakash S, Sonnemann S, Valdivia G, Ugaya S, Lie CM, Vickery-Niederman G (2011) Towards a life cycle sustainability assessment: making informed choices on products. N. p.,. Web, France

  • Contreras-Lisperguer R, Batuecas E, Mayo C, Díaz R, Pérez FJ, Springer C (2018) Sustainability assessment of electricity cogeneration from sugarcane bagasse in Jamaica. J Clean Prod 200:390–401. https://doi.org/10.1016/j.jclepro.2018.07.322

    Article  Google Scholar 

  • Cooper, Jasmin. (2017) Life cycle sustainability assessment of shale gas in the UK. The University of Manchester (United Kingdom)

  • Cooper J, Stamford L, Azapagic A (2018) Sustainability of UK shale gas in comparison with other electricity options: current situation and future scenarios. Sci Total Environ 619–620:804–814. https://doi.org/10.1016/j.scitotenv.2017.11.140

    Article  CAS  Google Scholar 

  • Corona B, San Miguel G (2019) Life cycle sustainability analysis applied to an innovative configuration of concentrated solar power. Int J Life Cycle Assess 24:1444–1460. https://doi.org/10.1007/s11367-018-1568-z

    Article  Google Scholar 

  • da S Trentin AW, Reddy KR, Kumar G, Chetri JK, Thomé A (2019) Quantitative Assessment of Life Cycle Sustainability (QUALICS): framework and its application to assess electrokinetic remediation. Chemosphere 230:92–106. https://doi.org/10.1016/j.chemosphere.2019.04.200

  • De Benedetto L, Klemeš J (2009) The environmental performance strategy map: an integrated LCA approach to support the strategic decision-making process. J Clean Prod 17:900–906. https://doi.org/10.1016/j.jclepro.2009.02.012

    Article  Google Scholar 

  • De Luca AI, Molari G, Seddaiu G, Toscano A, Bombino G, Ledda L, Milani M, Vittuari M (2015) Multidisciplinary and innovative methodologies for sustainable management in agricultural systems. Environ Eng Manag J 14:1571–1581. https://doi.org/10.30638/eemj.2015.169

    Article  Google Scholar 

  • De Luca AI, Falcone G, Stillitano T, Iofrida N, Strano A, Gulisano G (2018) Evaluation of sustainable innovations in olive growing systems: a life cycle sustainability assessment case study in southern Italy. J Clean Prod 171:1187–1202. https://doi.org/10.1016/j.jclepro.2017.10.119

    Article  Google Scholar 

  • Dinh TH, Dinh TH, Götze U (2020) Integration of sustainability criteria and life cycle sustainability assessment method into construction material selection in developing countries: the case of Vietnam. Int J Sustain Dev Plan 15:1145–1156. https://doi.org/10.18280/ijsdp.150801

    Article  Google Scholar 

  • Dobon A, Cordero P, Kreft F, Østergaard SR, Robertsson M Smolander M Hortal M (2011a) The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment. Int J Life Cycle Assess 16:168–177. https://doi.org/10.1007/s11367-011-0257-y

  • Dobon A, Cordero P, Kreft F, Østergaard SR, Antvorskov H, Robertsson M, Smolander M, Hortal M (2011b) The sustainability of communicative packaging concepts in the food supply chain. A case study: part 2. Life cycle costing and sustainability assessment. Int J Life Cycle Assess 16:537–547. https://doi.org/10.1007/s11367-011-0291-9

  • Ekener E, Hansson J, Larsson A, Peck P (2018) Developing life cycle sustainability assessment methodology by applying values-based sustainability weighting - Tested on biomass based and fossil transportation fuels. J Clean Prod 181:337–351. https://doi.org/10.1016/j.jclepro.2018.01.211

    Article  Google Scholar 

  • Elkington J (1998) Accounting for the triple bottom line. Meas Bus Excell 2:18–22. https://doi.org/10.1108/eb025539

    Article  Google Scholar 

  • Elkington J (2013) Enter the triple bottom line. Triple Bottom Line Does It All Add up 1:1–16. https://doi.org/10.4324/9781849773348

    Article  Google Scholar 

  • Ferrari AM, Volpi L, Pini M, Siligardi C, García-Muiña FE, Settembre-Blundo D (2018) Building a sustainability benchmarking framework of ceramic tiles based on life cycle sustainability assessment (LCSA). Resources 8. https://doi.org/10.3390/resources8010011

  • Fetanat A, Tayebi M, Mofid H (2022) Combining life cycle sustainability assessment and fuzzy multicriteria decision making method for prioritizing the flare technologies in the oil, gas, and chemical plants. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13837

    Article  Google Scholar 

  • Figueiredo K, Pierott R, Hammad AWA, Haddad A (2021) Sustainable material choice for construction projects: a life cycle sustainability assessment framework based on BIM and Fuzzy-AHP. Build Environ 196:107805. https://doi.org/10.1016/j.buildenv.2021.107805

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21. https://doi.org/10.1016/j.jenvman.2009.06.018

    Article  Google Scholar 

  • Foolmaun RK, Ramjeawon T (2013) Life cycle sustainability assessments (LCSA) of four disposal scenarios for used polyethylene terephthalate (PET) bottles in Mauritius. Environ Dev Sustain 15:783–806. https://doi.org/10.1007/s10668-012-9406-0

    Article  Google Scholar 

  • Galán-Martín Á, Guillén-Gosálbez G, Stamford L, Azapagic A (2016) Enhanced data envelopment analysis for sustainability assessment: a novel methodology and application to electricity technologies. Comput Chem Eng 90:188–200. https://doi.org/10.1016/j.compchemeng.2016.04.022

    Article  CAS  Google Scholar 

  • Gencturk B, Hossain K, Lahourpour S (2016) Life cycle sustainability assessment of RC buildings in seismic regions. Eng Struct 110:347–362. https://doi.org/10.1016/j.engstruct.2015.11.037

    Article  Google Scholar 

  • Gheewala SH, Bonnet S, Prueksakorn K, Nilsalab P (2011) Sustainability assessment of a biorefinery complex in Thailand. Sustainability 3:518–530. https://doi.org/10.3390/su3030518

    Article  Google Scholar 

  • Gholipour Y, Hasheminasab H, Kharrazi M, Streimikis J (2018) Sustainability criteria assessment for life-cycle phases of petroleum refinery projects by MADM technique. E a M Ekon a Manag 21:75–87. https://doi.org/10.15240/tul/001/2018-3-005

    Article  Google Scholar 

  • Guarino F, Cellura M, Traverso M (2020) Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler. Int J Life Cycle Assess 25:2063–2085. https://doi.org/10.1007/s11367-020-01779-9

    Article  Google Scholar 

  • Gulcimen S, Aydogan EK, Uzal N (2021) Life cycle sustainability assessment of a light rail transit system: integration of environmental, economic, and social impacts. Integr Environ Assess Manag 17:1070–1082. https://doi.org/10.1002/ieam.4428

    Article  Google Scholar 

  • Gumus S, Kucukvar M, Tatari O (2016) Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: the case of U.S. wind energy. Sustain Prod Consum 8:78–92. https://doi.org/10.1016/j.spc.2016.06.006

  • Guo S (2019) Life cycle sustainability decision-making framework for the prioritization of electrochemical energy storage under uncertainties. In: Life cycle sustainability assessment for decision-making. Elsevier, pp 291–308

  • Guo Z, Ge S, Yao X, Li H, Li X (2020) Life cycle sustainability assessment of pumped hydro energy storage. Int J Energy Res 44:192–204. https://doi.org/10.1002/er.4890

    Article  CAS  Google Scholar 

  • Gwerder YV, Marques P, Dias LC, Freire F (2019) Life beyond the grid: a life-cycle sustainability assessment of household energy needs. Appl Energy 255:113881. https://doi.org/10.1016/j.apenergy.2019.113881

  • Hacatoglu K (2014) A systems approach to assessing the sustainability of hybrid community energy systems 275

  • Hake JF, Koj JC, Kuckshinrichs W, Schlör H, Schreiber A, Wulf C, Zapp P, Ketelaer T (2017) Towards a life cycle sustainability assessment of alkaline water electrolysis. Energy Procedia 105:3403–3410. https://doi.org/10.1016/j.egypro.2017.03.779

    Article  Google Scholar 

  • Hall MR (2015) A transdisciplinary review of the role of economics in life cycle sustainability assessment. Int J Life Cycle Assess 20:1625–1639. https://doi.org/10.1007/s11367-015-0970-z

    Article  Google Scholar 

  • Hannouf M, Assefa G (2017) Life cycle sustainability assessment for sustainability improvements: a case study of high-density polyethylene production in Alberta, Canada. Sustain 9. https://doi.org/10.3390/su9122332

  • Harzing AW (2007) Publish or Perish. Available from: https://harzing.com/resources/publish-or-perish

  • Hauschild MZ, Rosenbaum RK, Olsen SI (2017) Life cycle assessment: theory and practice. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Springer International Publishing

  • Hoque N, Biswas W, Mazhar I, Howard I (2019) LCSA framework for assessing sustainability of alternative fuels for transport sector. Chem Eng Trans 72:103–108. https://doi.org/10.3303/CET1972018

    Article  Google Scholar 

  • Hoque N, Biswas W, Mazhar I, Howard I (2020) Life cycle sustainability assessment of alternative energy sources for the Western Australian transport sector. Sustain 12. https://doi.org/10.3390/su12145565

  • Huang B, Mauerhofer V (2016) Life cycle sustainability assessment of ground source heat pump in Shanghai. China J Clean Prod 119:207–214. https://doi.org/10.1016/j.jclepro.2015.08.048

    Article  Google Scholar 

  • Hunkeler D, Lichtenvort K, Rebitzer G (2008) Environmental life cycle costing. Crc Press

  • Ibáñez-Forés V, Bovea MD, Azapagic A (2013) Assessing the sustainability of best available techniques (BAT): methodology and application in the ceramic tiles industry. J Clean Prod 51:162–176. https://doi.org/10.1016/j.jclepro.2013.01.020

    Article  CAS  Google Scholar 

  • International Organization for Standardization (2006a) Environmental management—life cycle assessment—principles and framework ISO 14040: 2006. Switzerland, Geneva

  • International Organization for Standardization (2006b) Environmental management—life cycle assessment—requirements and guidelines ISO 14044: 2006. Switzerland, Geneva

  • International Organisation for Stardardization (n.d.) Principles and framework for social life cycle assessment (under development). Available online: https://www.iso.org/standard/61118.html

  • Janjua SY, Sarker PK, Biswas WK (2019) Sustainability assessment of a residential building using a life cycle assessment approach. Chem Eng Trans 72:19–24. https://doi.org/10.3303/CET1972004

    Article  Google Scholar 

  • Janjua SY, Sarker PK, Biswas WK (2020) Development of triple bottom line indicators for life cycle sustainability assessment of residential buildings. J Environ Manage 264:110476. https://doi.org/10.1016/j.jenvman.2020.110476

  • Janjua SY, Sarker PK, Biswas WK (2021) Sustainability implications of service life on residential buildings – an application of life cycle sustainability assessment framework. Environ Sustain Indic 10:100109. https://doi.org/10.1016/j.indic.2021.100109

  • Jena T, Kaewunruen S (2021) Life cycle sustainability assessments of an innovative FRP composite footbridge. Sustain 13:1–20. https://doi.org/10.3390/su132313000

    Article  CAS  Google Scholar 

  • Jin Q, Borthwick AGL (2016) An advanced micro-bio-loop to produce biogas. J Clean Prod 139:1094–1097. https://doi.org/10.1016/j.jclepro.2016.08.136

    Article  CAS  Google Scholar 

  • Jin Q, Yang Y, Li A, Liu F, Shan A (2017) Comparison of biogas production from an advanced micro-bio-loop and conventional system. J Clean Prod 148:245–253. https://doi.org/10.1016/j.jclepro.2017.02.021

    Article  CAS  Google Scholar 

  • Kabayo J, Marques P, Garcia R, Freire F (2019) Life-cycle sustainability assessment of key electricity generation systems in Portugal. Energy 176:131–142. https://doi.org/10.1016/j.energy.2019.03.166

    Article  Google Scholar 

  • Kalbar PP, Karmakar S, Asolekar SR (2016) Life cycle-based decision support tool for selection of wastewater treatment alternatives. J Clean Prod 117:64–72. https://doi.org/10.1016/j.jclepro.2016.01.036

    Article  Google Scholar 

  • Kamali M, Hewage K, Milani AS (2018) Life cycle sustainability performance assessment framework for residential modular buildings: aggregated sustainability indices. Build Environ 138:21–41. https://doi.org/10.1016/j.buildenv.2018.04.019

    Article  Google Scholar 

  • Klöpffer W (2008) Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p. 95). Int J Life Cycle Assess 13:89–95.https://doi.org/10.1065/lca2008.02.376

  • Kouloumpis V, Azapagic A (2018) Integrated life cycle sustainability assessment using fuzzy inference: a novel FELICITA model. Sustain Prod Consum 15:25–34. https://doi.org/10.1016/j.spc.2018.03.002

    Article  Google Scholar 

  • Kucukvar M, Tatari O (2013) Towards a triple bottom-line sustainability assessment of the U.S. construction industry. Int J Life Cycle Assess 18:958–972. https://doi.org/10.1007/s11367-013-0545-9

  • Lam WC, de Regel S, Peeters K, Spirinckx C (2021) Applying life cycle sustainability assessment to maximise the innovation potential of new technologies for critical components in wind turbines. J Phys Conf Ser 2042. https://doi.org/10.1088/1742-6596/2042/1/012103

  • Li H, Nitivattananon V, Li P (2015) Developing a sustainability assessment model to analyze China’s municipal solid waste management enhancement strategy. Sustain 7:1116–1141. https://doi.org/10.3390/su7021116

    Article  CAS  Google Scholar 

  • Li T, Roskilly AP, Wang Y (2017) A regional life cycle sustainability assessment approach and its application on solar photovoltaic. Energy Procedia 105:3320–3325. https://doi.org/10.1016/j.egypro.2017.03.757

    Article  Google Scholar 

  • Li T, Roskilly AP, Wang Y (2018) Life cycle sustainability assessment of grid-connected photovoltaic power generation: a case study of Northeast England. Appl Energy 227:465–479. https://doi.org/10.1016/j.apenergy.2017.07.021

    Article  CAS  Google Scholar 

  • Lindner M, Suominen T, Palosuo T, Garcia-Gonzalo J, Verweij P, Zudin S, Päivinen R (2010) ToSIA-A tool for sustainability impact assessment of forest-wood-chains. Ecol Modell 221:2197–2205. https://doi.org/10.1016/j.ecolmodel.2009.08.006

    Article  Google Scholar 

  • Liu S (2019) Development of a building-specific life cycle sustainability assessment model. Nanyang Technol Univ

  • Liu S, Qian S (2019) Towards sustainability‐oriented decision making: Model development and its validation via a comparative case study on building construction methods. Sustain Dev 27(5):860–872. https://doi.org/10.1002/sd.1946

    Article  Google Scholar 

  • Lloyd S, Scanlon K, Lengacher D (2012) Improving life cycle assessment by considering worker health and comparing alternatives based on relative efficiency. In Proceedings of the sustainable automotive technologies 2012. Springer Berlin Heidelberg: Berlin, Heidelberg 305–311

  • Lolli F, Ishizaka A, Gamberini R, Rimini B, Ferrari AM, Marinelli S, Savazza R (2016) Waste treatment: an environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Technol Environ Policy 18:1317–1332. https://doi.org/10.1007/s10098-015-1087-6

    Article  Google Scholar 

  • Lu B, Li B, Wang L, Yang J, Liu J, Wang XV (2014) Reusability based on life cycle sustainability assessment: case study on WEEE. Procedia CIRP 15:473–478. https://doi.org/10.1016/j.procir.2014.06.046

    Article  Google Scholar 

  • Luu LQ, Halog A (2016a) Rice husk based bioelectricity vs. Coal-fired electricity: life cycle sustainability assessment case study in Vietnam. Procedia CIRP 40:73–78

  • Luu LQ,, Halog A (2016b) Life cycle sustainability assessment: a holistic evaluation of social, economic, and environmental impacts. In: Sustainability in the design, synthesis and analysis of chemical engineering processes. Butterworth-Heinemann, pp 327–352

  • Ma J, Harstvedt JD, Dunaway D, Bian L, Jaradat R (2018) An exploratory investigation of additively manufactured product life cycle sustainability assessment. J Clean Prod 192:55–70. https://doi.org/10.1016/j.jclepro.2018.04.249

    Article  Google Scholar 

  • Mahbub N, Oyedun AO, Zhang H, Kumar A, Poganietz WR (2019) A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass. Int J Life Cycle Assess 24:881–899. https://doi.org/10.1007/s11367-018-1529-6

    Article  CAS  Google Scholar 

  • Maier SD, Beck T, Vallejo JF, Horn R, Söhlemann JH, Nguyen TT (2016) Methodological approach for the sustainability assessment of development cooperation projects for built innovations based on the SDGs and life cycle thinking. Sustain 8:1–26. https://doi.org/10.3390/su8101006

    Article  Google Scholar 

  • Maleki R, Atabi F, Jozi SA, Arjomandi R, Mansouri N (2020) Sustainable environmental management using life cycle sustainability assessment model in petrochemical industry. Pollution 6:337–351. https://doi.org/10.22059/POLL.2020.289002.678

    Article  CAS  Google Scholar 

  • Man Y, Han Y, Liu Y, Lin R, Ren J (2020) Multi-criteria decision making for sustainability assessment of boxboard production: a life cycle perspective considering water consumption, energy consumption, GHG emissions, and internal costs. J Environ Manage 255:109860. https://doi.org/10.1016/j.jenvman.2019.109860

  • Martínez-Blanco J, Lehmann A, Muñoz P, Antón A, Traverso M, Rieradevall J, Finkbeiner M (2014) Application challenges for the social life cycle assessment of fertilizers within life cycle sustainability assessment. J Clean Prod 69:34–48. https://doi.org/10.1016/j.jclepro.2014.01.044

    Article  Google Scholar 

  • Masilela P, Pradhan A (2021) A life cycle sustainability assessment of biomethane versus biohydrogen – for application in electricity or vehicle fuel? Case studies for African context. J Clean Prod 328:129567. https://doi.org/10.1016/j.jclepro.2021.129567

  • Matuštík J, Kočí V (2020) A comparative life cycle assessment of electronic retail of household products. Sustain 12:1–13. https://doi.org/10.3390/su12114604

    Article  Google Scholar 

  • Maxim A (2014) Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis. Energy Policy 65:284–297. https://doi.org/10.1016/j.enpol.2013.09.059

    Article  Google Scholar 

  • Menikpura SNM, Gheewala SH, Bonnet S (2012) Framework for life cycle sustainability assessment of municipal solid waste management systems with an application to a case study in Thailand. Waste Manag Res 30:708–719. https://doi.org/10.1177/0734242X12444896

    Article  CAS  Google Scholar 

  • Menikpura SNM, Gheewala SH, Bonnet S, Chiemchaisri C (2013) Evaluation of the effect of recycling on sustainability of municipal solid waste management in Thailand. Waste and Biomass Valorization 4:237–257. https://doi.org/10.1007/s12649-012-9119-5

    Article  CAS  Google Scholar 

  • Mitropoulos LK, Prevedouros PD (2011) Sustainability framework for the life cycle assessment of light-duty vehicles. In Proceedings of the ICCTP 2011: Towards Sustainable Transportation System 4407–4419

  • Mjörnell K, Boss A, Lindahl M, Molnar S (2014) A tool to evaluate different renovation alternatives with regard to sustainability. Sustain 6:4227–4245. https://doi.org/10.3390/su6074227

    Article  Google Scholar 

  • Mohammadifardi H, Knight MA, Unger AAJ (2019) Sustainability assessment of asset management decisions for wastewater infrastructure systems—implementation of a system dynamics model. Systems 7:34. https://doi.org/10.3390/systems7030034

    Article  Google Scholar 

  • Morel S, Traverso M, Preiss P (2018) Discussion panel—assessment of externalities: monetisation and social LCA. In Designing sustainable technologies, products and policies. Springer Nature 391–399

  • Moriizumi Y, Matsui N, Hondo H (2010) Simplified life cycle sustainability assessment of mangrove management: a case of plantation on wastelands in Thailand. J Clean Prod 18:1629–1638. https://doi.org/10.1016/j.jclepro.2010.07.017

    Article  Google Scholar 

  • Moslehi S, Reddy TA (2019) A new quantitative life cycle sustainability assessment framework: application to integrated energy systems. Appl Energy 239:482–493. https://doi.org/10.1016/j.apenergy.2019.01.237

    Article  Google Scholar 

  • Müller-Lindenlauf M et al (2014) Integrated sustainability assessment of SUPRABIO biorefineries: main results of the suprabio project from an overall sustainability perspective. Institute for Energy and Environmental Research Heidelberg (IFEU), Heidelber, Germany

    Google Scholar 

  • Nathanail E, Mitropoulos L, Karakikes I, Adamos G (2018) Sustainability framework for assessing urban freight transportation measures. Logist Sustain Transp 9:16–36. https://doi.org/10.2478/jlst-2018-0007

    Article  Google Scholar 

  • Nguyen TA et al (2020) Hot-spots and lessons learned from life cycle sustainability assessment of inedible vegetable-oil based biodiesel in Northern Viet Nam. In: Biofuels for a More Sustainable Future. Elsevier, pp 165–212

  • Neugebauer S (2016) Enhancing life cycle sustainability assessment tiered approach and new characterization models for social life cycle assessment and life cycle costing. 214. https://doi.org/10.14279/depositonce-5644

  • Neugebauer S, Forin S, Finkbeiner M (2016) From life cycle costing to economic life cycle assessment-introducing an economic impact pathway. Sustain 8:1–23. https://doi.org/10.3390/su8050428

    Article  Google Scholar 

  • Nguyen TA, Kuroda K, Otsuka K (2017) Inclusive impact assessment for the sustainability of vegetable oil-based biodiesel–Part I: linkage between inclusive impact index and life cycle sustainability assessment. J Clean Prod 166:1415–1427. https://doi.org/10.1016/j.jclepro.2017.08.059

    Article  Google Scholar 

  • Nieder-Heitmann M, Haigh KF, Görgens JF (2019) Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the South African sugar industry. J Clean Prod 239. https://doi.org/10.1016/j.jclepro.2019.118039

  • Noori M, Kucukvar M, Tatari O (2015) A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. Int J Sustain Energy 34:629–644. https://doi.org/10.1080/14786451.2013.854796

    Article  Google Scholar 

  • Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, van Langenhove H (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energy 93:496–506. https://doi.org/10.1016/j.apenergy.2011.12.020

    Article  Google Scholar 

  • Onat NC, Kucukvar M, Tatari O (2014a) Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: the case for US buildings. Int J Life Cycle Assess 19:1488–1505. https://doi.org/10.1007/s11367-014-0753-y

    Article  Google Scholar 

  • Onat NC, Kucukvar M, Tatari O (2014b) Towards life cycle sustainability assessment of alternative passenger vehicles 6. ISBN 1407823655

  • Onat NC, Gumus S, Kucukvar M, Tatari O (2016a) Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustain Prod Consum 6:12–25. https://doi.org/10.1016/j.spc.2015.12.003

    Article  Google Scholar 

  • Onat NC, Kucukvar M, Tatari O, Zheng QP (2016b) Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S. J Clean Prod 112:291–307. https://doi.org/10.1016/j.jclepro.2015.09.021

  • Onat NC, Kucukvar M, Tatari O, Egilmez G (2016c) Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. Int J Life Cycle Assess 21:1009–1034. https://doi.org/10.1007/s11367-016-1070-4

    Article  CAS  Google Scholar 

  • Onat NC, Kucukvar M, Tatari O (2016d) Uncertainty-embedded dynamic life cycle sustainability assessment framework: an ex-ante perspective on the impacts of alternative vehicle options. Energy 112:715–728. https://doi.org/10.1016/j.energy.2016.06.129

    Article  Google Scholar 

  • Onat NC, Kucukvar M, Aboushaqrah NNM, Jabbar R (2019) How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar. Appl Energy 250:461–477. https://doi.org/10.1016/j.apenergy.2019.05.076

    Article  Google Scholar 

  • Opher T, Friedler E, Shapira A (2018) Comparative life cycle sustainability assessment of urban water reuse at various centralization scales. Int J Life Cycle Assess 24:1319–1332. https://doi.org/10.1007/s11367-018-1469-1

    Article  Google Scholar 

  • ORIENTING Project (2022a) D1.6 Best available approaches for LCSA. https://orienting.eu/publications/d1-6-best-available-approaches-for-lcsa/

  • ORIENTING Project (2022b) D2.3 LCSA methodology to be implemented in WP4 demonstrations. https://orienting.eu/publications/d2-3-lcsa-methodology-to-be-implemented-in-wp4-demonstrations/

  • Ostermeyer Y, Wallbaum H, Reuter F (2013) Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. Int J Life Cycle Assess 18:1762–1779. https://doi.org/10.1007/s11367-013-0548-6

    Article  Google Scholar 

  • Pastare L, Romagnoli F, Lauka D, Dzene I, Kuznecova T (2014) Sustainable use of macro-algae for biogas production in latvian conditions: a preliminary study through an integrated MCA and LCA approach. Environ Clim Technol 13:44–56. https://doi.org/10.2478/rtuect-2014-0006

    Article  CAS  Google Scholar 

  • Pérez-López P, Feijoo G, Moreira MT (2018) Sustainability assessment of blue biotechnology processes: addressing environmental, social and economic dimensions. In Design Sustain Technol Prod Pol 475–486. ISBN 9783319669816

  • Popien J-L, Thies C, Spengler TS (2022) Exploring recycling options in battery supply chains – a life cycle sustainability assessment. Procedia CIRP 105:434–439. https://doi.org/10.1016/j.procir.2022.02.072

    Article  Google Scholar 

  • Purvis B, Mao Y, Robinson D (2019) Three pillars of sustainability: in search of conceptual origins. Sustain Sci 14:681–695. https://doi.org/10.1007/s11625-018-0627-5

    Article  Google Scholar 

  • Raymond AJ, Purdy C, Fox T, Kendall A, Dejong JT, Kavazanjian E, Woolley M, Martin K (2019) Life cycle sustainability assessment of enzyme-induced carbonate precipitation (EICP) for fugitive dust control. Acad J Civ Eng 37:600–607. https://doi.org/10.26168/icbbm2019.87

  • Reddy KR, Ghimire SN, Wemeyi E, Zanjani R, Zhao L (2020) Life cycle sustainability assessment of geothermal heating and cooling system: UIC case study. E3S Web Conf 205. https://doi.org/10.1051/e3sconf/202020507003

  • Ren J (2019) Integrated data envelopment analysis, weighting method and life cycle thinking: a quantitative framework for life cycle sustainability improvement. In: Life Cycle Sustainability Assessment for Decision-Making. Elsevier, pp 329–344

  • Ren J, Toniolo S (2019) Multi-criteria decision-making after life cycle sustainability assessment under hybrid information. In: Life Cycle Sustainability Assessment for Decision-Making. Elsevier, pp 269-289

  • Ren J (2018a) Life cycle aggregated sustainability index for the prioritization of industrial systems under data uncertainties. Comput Chem Eng 113:253–263. https://doi.org/10.1016/j.compchemeng.2018.03.015

  • Ren J (2018b) Multi-criteria decision making for the prioritization of energy systems under uncertainties after life cycle sustainability assessment. Sustain Prod Consum 16:45–57. https://doi.org/10.1016/j.spc.2018.06.005

  • Ren J, Ren X, Liang H, Dong L, Zhang L, Luo X, Yang Y, Gao Z (2017) Multi-actor multi-criteria sustainability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part 2: improved extension theory. Int J Life Cycle Assess 22:1406–1417. https://doi.org/10.1007/s11367-016-1252-0

  • Ren J, Liang H (2017) Measuring the sustainability of marine fuels: a fuzzy group multi-criteria decision making approach. Transp Res Part D Transp Environ 54:12–29. https://doi.org/10.1016/j.trd.2017.05.004

    Article  Google Scholar 

  • Ren J, Sara Toniolo S (2018) Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: an interval multi-criteria decision making approach. J Clean Prod 175:222–236. https://doi.org/10.1016/j.jclepro.2017.12.070

    Article  CAS  Google Scholar 

  • Ren J, Manzardo A, Mazzi A, Zuliani F, Scipioni A (2015) Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. Int J Life Cycle Assess 20:842–853. https://doi.org/10.1007/s11367-015-0877-8

    Article  CAS  Google Scholar 

  • Ren J, Xu D, Cao H, Wei S, Dong L, Goodsite ME (2016) Sustainability decision support framework for industrial system prioritization. AIChE J 59:215–228. https://doi.org/10.1002/aic

    Article  Google Scholar 

  • Ren J, Ren X, Dong L, Manzardo A, He C, Pan M (2018) Multiactor multicriteria decision making for life cycle sustainability assessment under uncertainties. AIChE J 64:2103–2112. https://doi.org/10.1002/aic.16149

    Article  CAS  Google Scholar 

  • Rettenmaier Nils et al (2014) Integrated Sustainability Assessment of the BIOCORE Biorefinery Concept Report Prepared for the BIOCORE Project. Institut für Energie und Umweltforschung, Heidelberg, Germany

    Google Scholar 

  • Reuter B (2016) Assessment of sustainability issues for the selection of materials and technologies during product design: a case study of lithium-ion batteries for electric vehicles. Int J Interact Des Manuf 10:217–227. https://doi.org/10.1007/s12008-016-0329-0

    Article  Google Scholar 

  • Roinioti A, Koroneos C (2019) Integrated life cycle sustainability assessment of the Greek interconnected electricity system. Sustain Energy Technol Assessments 32:29–46. https://doi.org/10.1016/j.seta.2019.01.003

    Article  Google Scholar 

  • Rosenbaum RK, Hauschild MZ, Boulay AM, Fantke P, Laurent A, Núñez M, Vieira M (2018) Life cycle impact assessment. In Life Cycle Assess Theor Pract 167–270

  • Sánchez Berriel S, Ruiz Y, Sánchez IR, Martirena JF, Rosa E, Habert G (2017) Introducing low carbon cement in Cuba - a life cycle sustainability assessment study. In Proc Calcined Clay Sustain Conc

  • Sadhukhan J, Gadkari S, Martinez-Hernandez E, Ng KS, Shemfe M, Torres-Garcia E, Lynch J (2019) Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chem 21:2635–2655. https://doi.org/10.1039/c9gc00607a

    Article  CAS  Google Scholar 

  • Santoyo-Castelazo E, Azapagic A (2014) Sustainability assessment of energy systems: integrating environmental, economic and social aspects. J Clean Prod 80:119–138. https://doi.org/10.1016/j.jclepro.2014.05.061

    Article  Google Scholar 

  • Schau EM, Traverso M, Finkbeiner M (2012) Life cycle approach to sustainability assessment: a case study of remanufactured alternators. J Remanufacturing 2:1–14. https://doi.org/10.1186/2210-4690-2-5

    Article  Google Scholar 

  • Schaubroeck T, Rugani B (2017) A revision of what life cycle sustainability assessment should entail: towards modeling the net impact on human well-being. J Ind Ecol 21:1464–1477. https://doi.org/10.1111/jiec.12653

    Article  Google Scholar 

  • Schüpbach B, Roesch A, Herzog F, Szerencsits E, Walter T (2020) Development and application of indicators for visual landscape quality to include in life cycle sustainability assessment of Swiss agricultural farms. Ecol Indic 110:105788. https://doi.org/10.1016/j.ecolind.2019.105788

  • Scope C, Guenther E, Schütz J, Mielecke T, Mündecke E, Schultze K, Saling P (2020) Aiming for life cycle sustainability assessment of cement-based composites: a trend study for wall systems of carbon concrete: Dresden Nexus Conference 2020—Session 4—Circular economy for building with secondary construction materials to minimise resource. Civ Eng Des 2:143–158. https://doi.org/10.1002/cend.202000024

    Article  Google Scholar 

  • Selvaraj A, Gautam J, Verma S, Verma G, Jain S (2021) Life cycle sustainability assessment of crops in India. Curr Res Environ Sustain 3:100074. https://doi.org/10.1016/j.crsust.2021.100074

  • Sen B, Kucukvar M, Onat NC, Tatari O (2020) Life cycle sustainability assessment of autonomous heavy-duty trucks. J Ind Ecol 24:149–164. https://doi.org/10.1111/jiec.12964

    Article  CAS  Google Scholar 

  • Settembre Blundo D, García-Muiña FE, Pini M, Volpi L, Siligardi C, Ferrari AM (2019) Sustainability as source of competitive advantages in mature sectors: the case of Ceramic District of Sassuolo (Italy). Smart Sustain Built Environ 8:53–79. https://doi.org/10.1108/SASBE-07-2018-0038

    Article  Google Scholar 

  • Seyrfar A, Osman I, Akbuga M (2021) Life cycle sustainability assessment of flexible and rigid pavement designs : a case study of Illinois Interstate Highway. Transp Res Board 1(00th Annu Meet 0–15

  • Shah B, Unnikrishnan S (2021) Model for life cycle sustainability assessment of coal based electricity generation in India. https://doi.org/10.21203/rs.3.rs-223443/v1

  • Shiau TA, Chuang YR (2012) Evaluating gravel transport sustainability: a case study of Taiwan’s northeast corridor. Transp Res Part D Transp Environ 17:287–292. https://doi.org/10.1016/j.trd.2012.01.003

    Article  Google Scholar 

  • Shrivastava S, Unnikrishnan S (2021) Life cycle sustainability assessment of crude oil in India. J Clean Prod 283:124654. https://doi.org/10.1016/j.jclepro.2020.124654

  • Sims R (2014) Life cycle sustainability assessment of the electrification of residential heat supply in UK cities. PQDT - UK Irel 450

  • Sou WI, Chu A, Chiueh PT (2016) Sustainability assessment and prioritisation of bottom ash management in Macao. Waste Manag Res 34:1275–1282. https://doi.org/10.1177/0734242X16665914

    Article  CAS  Google Scholar 

  • Souza RG et al (2013) Problem structuring methods as an input to life cycle sustainability assessment: the case of Brazilian weee reverse logistics. Proceedings of the Fourteenth International Waste Management and Landfill Symposium, vol. 30, S. Margherita di Pula, Italy

  • Stamford LJ (2012) Life cycle sustainability assessment of electricity generation: a methodology and an application in the UK context. The University of Manchester, United Kingdom

  • Stamford L (2020) Life cycle sustainability assessment in the energy sector. Biofuels for a More Sustainable Future. Elsevier, pp 115–163

  • Stamford L, Azapagic A (2012) Life cycle sustainability assessment of electricity options for the UK. Int J Energy Res 36:1263–1290. https://doi.org/10.1002/er.2962

  • Stamford L, Azapagic A (2014) Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustain Dev 23:194–211. https://doi.org/10.1016/j.esd.2014.09.008

  • Stark R, Buchert T, Neugebauer S, Bonvoisin J, Finkbeiner M (2017) Benefits and obstacles of sustainable product development methods: a case study in the field of urban mobility. Des Sci 3:1–30. https://doi.org/10.1017/dsj.2017.20

    Article  Google Scholar 

  • Stefanova M, Tripepi C, Zamagni A, Masoni P (2014) Goal and scope in life cycle sustainability analysis: the case of hydrogen production from biomass. Sustain 6:5463–5475. https://doi.org/10.3390/su6085463

    Article  Google Scholar 

  • Subramanian K, Chopra SS, Ashton WS (2021) Capital-based life cycle sustainability assessment: evaluation of potential industrial symbiosis synergies. J Ind Ecol 25:1161–1176. https://doi.org/10.1111/jiec.13135

    Article  Google Scholar 

  • Swarr TE, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16:389–391. https://doi.org/10.1007/s11367-011-0287-5

    Article  Google Scholar 

  • Tarne P, Traverso M, Finkbeiner M (2017) Review of life cycle sustainability assessment and potential for its adoption at an automotive company. Sustain 9:1–23. https://doi.org/10.3390/su9040670

    Article  Google Scholar 

  • Thakur V, Chandel MK (2021). Sustainability Assessment of Biodiesel Produced from Jatropha Curcas Using Life Cycle Assessment Approach. https://doi.org/10.1038/132817a0

    Article  Google Scholar 

  • Touceda MI, Neila FJ, Degrez M (2016) Modeling socioeconomic pathways to assess sustainability: a tailored development for housing retrofit. Int J Life Cycle Assess 23:710–725. https://doi.org/10.1007/s11367-016-1194-6

    Article  Google Scholar 

  • Traverso M, Asdrubali F, Francia A, Finkbeiner M (2012b) Towards life cycle sustainability assessment: an implementation to photovoltaic modules. Int J Life Cycle Assess 17:1068–1079. https://doi.org/10.1007/s11367-012-0433-8

    Article  CAS  Google Scholar 

  • Traverso M, Finkbeiner M, Jørgensen A, Schneider L (2012a) Life cycle sustainability dashboard. J Ind Ecol 16:680–688. https://doi.org/10.1111/j.1530-9290.2012.00497.x

    Article  Google Scholar 

  • Traverso M, Valdivia S, Luthin A, Roche L, Arcese G, Neugebauer S, Petti L. D’Eusanio M, Tragnone BM, Mankaa R et al (2021) Methodological sheets for subcategories in social life cycle assessment ( S-LCA ) 2021. 150

  • Tsambe MZA, de Almeida CF, Ugaya CML, Cybis LF (2013) Application of life cycle sustainability assessment to used lubricant oil management in South Brazilian region. Sustain 13:1–16. https://doi.org/10.3390/su132413583

  • Valdivia S, Ugaya CML, Hildenbrand J, Traverso M, Mazijn B, Sonnemann G (2013) A UNEP/SETAC approach towards a life cycle sustainability assessment—our contribution to Rio+20. Int J Life Cycle Assess 18:1673–1685. https://doi.org/10.1007/s11367-012-0529-1

    Article  Google Scholar 

  • Valdivia S, Backes JG, Traverso M, Sonnemann G, Cucurachi S, Guinée JB, Schaubroeck T, Finkbeiner M, Leroy-Parmentier N, Ugaya C et al (2021) Principles for the application of life cycle sustainability assessment. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-021-01958-2

    Article  Google Scholar 

  • Valente C et al (2014) Sustainability assessment of chestnut and invaded coppice forests in Piedmont region (Italy). Ostfold Research, Kråkerøy

  • Valente A, Iribarren D, Dufour J (2019) Life cycle sustainability assessment of hydrogen from biomass gasification: a comparison with conventional hydrogen. Int J Hydrogen Energy 44:21193–21203. https://doi.org/10.1016/j.ijhydene.2019.01.105

    Article  CAS  Google Scholar 

  • Valente A, Iribarren D, Dufour J (2021) Comparative life cycle sustainability assessment of renewable and conventional hydrogen. Sci Total Environ 756:144132. https://doi.org/10.1016/j.scitotenv.2020.144132

  • Valente C, Modahl IS, Askham C (2013) Method development for life cycle sustainability assessment (LCSA) of New Norwegian Biorefinery. Project Title, Nytt Norsk Bioraffineri, Report No.: OR 39:62

  • Valente C, Møller H, Johnsen FM, Saxegård S, Brunsdon ER, Alvseike OA (2020) Life cycle sustainability assessment of a novel slaughter concept. J Clean Prod 272:122651. https://doi.org/10.1016/j.jclepro.2020.122651

  • van der Velden NM, Vogtländer JG (2017) Monetisation of external socio-economic costs of industrial production: a social-LCA-based case of clothing production. J Clean Prod 153:320–330. https://doi.org/10.1016/j.jclepro.2017.03.161

    Article  Google Scholar 

  • van Kempen EA, Spiliotopoulou E, Stojanovski G, de Leeuw S (2017) Using life cycle sustainability assessment to trade off sourcing strategies for humanitarian relief items. Int J Life Cycle Assess 22:1718–1730. https://doi.org/10.1007/s11367-016-1245-z

    Article  Google Scholar 

  • Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X et al (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean Prod 161:957–967. https://doi.org/10.1016/j.jclepro.2017.05.206

    Article  Google Scholar 

  • Vinyes E, Oliver-Solà J, Ugaya C, Rieradevall J, Gasol CM (2013) Application of LCSA to used cooking oil waste management. Int J Life Cycle Assess 18:445–455. https://doi.org/10.1007/s11367-012-0482-z

    Article  CAS  Google Scholar 

  • Visentin C, Trentin AW, da S, Braun AB, Thomé A (2020) Life cycle sustainability assessment: a systematic literature review through the application perspective, indicators, and methodologies. J Clean Prod 270. https://doi.org/10.1016/j.jclepro.2020.122509

  • Visentin C, Trentin AW, da S, Braun AB, Thomé A (2021) Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation. Environ Pollut 268. https://doi.org/10.1016/j.envpol.2020.115915

  • Wafa W, Sharaai AH, Matthew NK, Ho SAJ, Akhundzada NA (2022) Organizational life cycle sustainability assessment (OLCSA) for a higher education institution as an organization: a systematic review and bibliometric analysis. Sustain 14. https://doi.org/10.3390/su14052616

  • Wang JJ, Wang YF, Sun YW, Tingley DD, Zhang YR (2017) Life cycle sustainability assessment of fly ash concrete structures. Renew Sustain Energy Rev 80:1162–1174. https://doi.org/10.1016/j.rser.2017.05.232

    Article  CAS  Google Scholar 

  • Weiss M et al (2011) Enhanced assessment of the air transportation system. In: 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than. https://doi.org/10.2514/6.2011-6888

  • Wilson AR et al (2020) A process-based life cycle sustainability assessment of the space-based solar power concept. In: 71st International Astronautical Congress

  • Wulf C, Werker J, Ball C, Zapp P, Kuckshinrichs W (2019) Review of sustainability assessment approaches based on life cycles. Sustain 11. https://doi.org/10.3390/su11205717

  • Wulf C, Zapp P, Schreiber A, Marx J, Schlör H (2017) Lessons learned from a life cycle sustainability assessment of rare earth permanent magnets. J Ind Ecol 21:1578–1590. https://doi.org/10.1111/jiec.12575

    Article  CAS  Google Scholar 

  • Wulf C, Werker J, Zapp P, Schreiber A, Schlör H, Kuckshinrichs W (2018) Sustainable development goals as a guideline for indicator selection in life cycle sustainability assessment. Procedia CIRP 69:59–65. https://doi.org/10.1016/j.procir.2017.11.144

    Article  Google Scholar 

  • Wulf C, Zapp P, Schreiber A, Kuckshinrichs W (2021) Setting thresholds to define indifferences and preferences in PROMETHEE for life cycle sustainability assessment of European hydrogen production. Sustain 13. https://doi.org/10.3390/su13137009

  • Xu D, Lv L, Ren J, Shen W, Wei S, Dong L (2017) Life cycle sustainability assessment of chemical processes: a vector-based three-dimensional algorithm coupled with AHP. Ind Eng Chem Res 56:11216–11227. https://doi.org/10.1021/acs.iecr.7b02041

    Article  CAS  Google Scholar 

  • Xu D, Li W, Dong L (2019) A composite life cycle sustainability index for sustainability prioritization of industrial systems. Life Cycle Sustain Assess Decis Methodol Case Stud 225–252. https://doi.org/10.1016/B978-0-12-818355-7.00011-7

  • Yıldız-Geyhan E, Yılan G, Altun-Çiftçioğlu GA, Kadırgan MAN (2019) Environmental and social life cycle sustainability assessment of different packaging waste collection systems. Resour Conserv Recycl 143:119–132. https://doi.org/10.1016/j.resconrec.2018.12.028

    Article  Google Scholar 

  • Yang J, Guo L (2021) Dynamic evaluation of water utilization efficiency in large coal mining area based on life cycle sustainability assessment theory. Geofluids 2021:1–20. https://doi.org/10.1155/2021/7793988

  • You F, Tao L, Graziano DJ, Snyder SW (2012) Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE J 59:215–228. https://doi.org/10.1002/aic

    Article  Google Scholar 

  • Yu M, Halog A (2015) Solar photovoltaic development in Australia—a life cycle sustainability assessment study. Sustainability 7(2):1213–1247

  • Zajáros A, Szita K, Matolcsy K, Horváth D (2018) Life cycle sustainability assessment of DMSO solvent recovery from hazardous waste water. Period Polytech Chem Eng 62:305–309. https://doi.org/10.3311/PPch.11097

    Article  Google Scholar 

  • Zheng X, Easa SM, Ji T, Jiang Z (2020) Incorporating uncertainty into life-cycle sustainability assessment of pavement alternatives. J Clean Prod 264:121466. https://doi.org/10.1016/j.jclepro.2020.121466

  • Zheng X, Easa SM, Yang Z, Ji T, Jiang Z (2019) Life-cycle sustainability assessment of pavement maintenance alternatives: methodology and case study. J Clean Prod 213:659–672. https://doi.org/10.1016/j.jclepro.2018.12.227

    Article  Google Scholar 

  • Zhou Z, Jiang H, Qin L (2007) Life cycle sustainability assessment of fuels. Fuel 86:256–263. https://doi.org/10.1016/j.fuel.2006.06.004

    Article  CAS  Google Scholar 

  • Zira S, Rydhmer L, Ivarsson E, Hoffmann R, Röös E (2021) A life cycle sustainability assessment of organic and conventional pork supply chains in Sweden. Sustain Prod Consum 28:21–38. https://doi.org/10.1016/j.spc.2021.03.028

    Article  Google Scholar 

  • Zortea RB, Maciel VG, Passuello A (2018) Sustainability assessment of soybean production in Southern Brazil: a life cycle approach. Sustain Prod Consum 13:102–112. https://doi.org/10.1016/j.spc.2017.11.002

    Article  Google Scholar 

Download references

Funding

The research of Noémie Leroy-Parmentier, Ph.D. candidate, is co-funded by the French agency for ecological transition (ADEME) and the Nouvelle-Aquitaine Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémie Leroy-Parmentier.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Alessandra Zamagni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 117 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy-Parmentier, N., Valdivia, S., Loubet, P. et al. Alignment of the life cycle initiative’s “principles for the application of life cycle sustainability assessment” with the LCSA practice: A case study review. Int J Life Cycle Assess 28, 704–740 (2023). https://doi.org/10.1007/s11367-023-02162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-023-02162-0

Keywords

Navigation