Skip to main content

Advertisement

Log in

Cup plant, an alternative to conventional silage from a LCA perspective

  • LCA FOR AGRICULTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The growing awareness of the importance of biodiversity in agroecosystems in increasing and ensuring the supply of biomass has led to heightened interest from governments and farmers in alternative crops. This article assesses one such alternative crop, cup plant (Silphium perfoliatum L.), in terms of the environmental aspects of cultivation for forage production. Many studies have previously focused on cup plant, but so far, this plant has not been assessed using the life cycle assessment (LCA) method.

Materials and methods

This study compares the environmental load of cup plant with the most commonly grown silage crops in Central European conditions—maize—and with another common forage crop—lucerne using LCA. The system boundaries include all the processes from cradle to farm gate and both mass-based (1 ton of dry matter) and area-based (1 ha of monoculture) functional units were chosen for the purposes of this study. The results cover the impact categories related to the agricultural LCAs, and the ReCiPe Midpoint (H) characterization model was used for the data expression, by using SimaPro 9.0.0.40 software.

Results

This study compares the cultivation of cup plant with the most commonly grown silage crop in Central European conditions—maize—and with another common forage crop—lucerne. The paper shows the potential of cup plant to replace conventional silage (maize and lucerne silage mix) with certain environmental savings in selected impact categories, and importantly, while still maintaining the same performance levels in dairy farming as with conventional silage, as already reported in previous publications. For the Czech Republic alone, this would, in practice, mean replacing up to 50,000 ha of silage maize and reducing the environmental load by about tens of percent or more within the various impact categories and years of cultivation.

Conclusion

Cup plant can replace the yield and quality of silage maize, represents a lower environmental load per unit of production and unit of area and generally carries many other benefits. Thus, cup plant is a recommendable option for dairy farming. Given the recent experience and knowledge of the issue, the cup plant can be considered an effective alternative to conventional silage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agronormativy (2015) Normativy pro zemědělskou a potravinářskou výrobu: AGroConsult. http://www.agronormativy.cz/. Accessed 5 April 2019

  • Albrecht KA, Goldstein W (1997) Silphium perfoliatum: A North American prairie plant with potential as a forage crop. In Conference June 8–19 Conference Year, Winnipeg 167–168

  • Albrecht KA, Han KJ, Combs DK (2017) Silphium perfoliatum L. silage as alterative to lucerne and maize silage in dairy cow rations. Grassland resources for extensive farming systems in marginal lands: major drivers and future scenarios 22(1): 500–502

  • Aurbacher J, Benke M, Formowitz B, Glauert T, Heiermann M, Herrmann C, Idler C, Kornatz P, Nehring A, Rieckmann C, Rieckmann G (2012) Energiepflanzen für Biogasanlagen (Broschüre No. 553). Fachagentur Nachwachsende Rohstoffe eV: Rostock, Germany, 1–84

  • Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463:541–551

    Article  Google Scholar 

  • Bauböck R, Karpenstein-Machan M, Kappas M (2014) Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany). Environ Sci Eur 26(1):19

    Article  Google Scholar 

  • Bellarby J, Foereid B, Hastings A (2008) Cool farming: climate impacts of agriculture and mitigation potential. Scotland, Aberdeen

    Google Scholar 

  • Bernas J, Konvalina P, Brom J, Moudrý J Jr, Veselá T, Bucur D, Dirja M, Shim S (2019a) Agrotechnology as key factor in effective use of water on arable land. In Assessment and Protection of Water Resources in the Czech Republic, Springer, Cham

    Google Scholar 

  • Bernas J, Moudrý J Jr, Kopecký M, Konvalina P, Štěrba Z (2019b) Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy 9(2):98

    Article  CAS  Google Scholar 

  • Bessou C, Basset-Mens C, Latunussa C, Vélu A, Heitz H, Vannière H, Caliman JP (2016) Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. The Int J Life Cycle Assess 21(3):297–310

    Article  Google Scholar 

  • Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18(2):340–361

    Article  Google Scholar 

  • Bufe C, Korevaar H (2018) Evaluation of additional crops for Dutch list of ecological focus area: evaluation of Miscanthus, Silphium perfoliatum, fallow sown in with melliferous plants and sunflowers in seed mixtures for catch crops. Wageningen Research Foundation (WR) business unit Agrosystems Research No 793

  • Burke M, Emerick K (2016) Adaptation to climate change: evidence from US agriculture. Am Econ J- Econ Policy 8(3):106–140

    Article  Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Current Opinion in Environmental Sustainability 8:39–43

    Article  Google Scholar 

  • Cattani M, Guzzo N, Mantovani R, Bailoni L (2017) Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. J Anim Sci Biotechnol 8(1):15

    Article  CAS  Google Scholar 

  • CHI (Czech Hydrometeorological Institute) (2020) http://portal.chmi.cz/. Accessed 14 January 2020

  • Chimento C, Almagro M, Amaducci S (2016) Carbon sequestration potential in perennial bioenergy crops: the importance of organic matter inputs and its physical protection. Gcb Bioenergy 8(1):111–121

    Article  CAS  Google Scholar 

  • CZSO (The Czech Statistical Office) (2020) Prague: Integrated operational program, Uropean Union. https://www.czso.cz/csu/czso/home. Accessed 17 July 2019

  • De Klein C, Novoa RS, Ogle S, Smith KA, Rochette P, Wirth TC, McConkey BG, Mosier A, Rypdal K, Walsh M, Williams SA (2006) N2O emissions from managed soils and CO2 emissions from lime and urea application. IPCC guidelines for National greenhouse gas inventories prepared by the National greenhouse gas inventories programme 4:1–54

    Google Scholar 

  • De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenerg 34(2):188–202

    Article  Google Scholar 

  • Dijkman TJ, Basset-Mens C, Antón A, Núñez M (2018) LCA of food and agriculture. Life Cycle Assessment. Springer, Cham, pp 723–754

    Chapter  Google Scholar 

  • Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17(9):1104–1115

    Article  CAS  Google Scholar 

  • Durlinger B, Koukouna E, Broekema R, Van Paassen M, Scholten J (2017) Agri-footprint 4.0

  • Ericsson K, Rosenqvist H, Nilsson LJ (2009) Energy crop production costs in the EU. Biomass Bioenerg 33(11):1577–1586

    Article  Google Scholar 

  • Escobar N, Ramírez-Sanz C, Chueca P, Moltó E, Sanjuan N (2017) Multiyear life cycle assessment of switchgrass (Panicum virgatum L.) production in the Mediterranean region of Spain: a comparative case study. Biomass Bioenergy 107:74–85

    Article  CAS  Google Scholar 

  • Exnerova Z, Beranova J (2017) Agriculture (CRF sector 3). In: Krtkova E (ed) National Greenhouse Gas Inventory Report of The Czech Republic (reported inventories 1990–2015), 1st edn. Prague, Czech Republic, Czech Hydrometeorological Institute, pp 225–252

    Google Scholar 

  • Gansberger M, Montgomery LF, Liebhard P (2015) Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: a review. Ind Crop Prod 63:362–372

    Article  Google Scholar 

  • Gansberger M, Stüger HP, Weinhappel M, Moder K, Liebhard P, von Gehren P, Mayr J, Ratzenböck A (2017) Germination characteristic of Silphium perfoliatum L. seeds. Die Bodenkultur: J Land Management Food Environ 68(2):73–79

    Article  Google Scholar 

  • Gentil C, Basset-Mens C, Manteaux S, Mottes C, Maillard E, Biard Y, Fantke P (2020) Coupling pesticide emission and toxicity characterization models for LCA: application to open-field tomato production in Martinique. J Clean Prod 277:124099

    Article  CAS  Google Scholar 

  • Ghabbour EA, Davies G, Misiewicz T, Alami RA, Askounis EM, Cuozzo NP, Filice AJ, Haskell JM, Moy AK, Roach AC, Shade J (2017) National comparison of the total and sequestered organic matter contents of conventional and organic farm soils. Adv Agron 146:1–35

    Article  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver AM, Struijs J, Van Zelm R (2009) ReCiPe. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators At the Midpoint and the Endpoint Level; Report I: Characterisation.

  • Haag NL, Nägele HJ, Reiss K, Biertümpfel A, Oechsner H (2015) Methane formation potential of cup plant (Silphium perfoliatum). Biomass Bioenerg 75:126–133

    Article  CAS  Google Scholar 

  • Hakl J, Fuksa P, Konečná J, Pacek L, Tlustoš P (2014) Effect of applied cultivation technology and environmental conditions on lucerne farm yield in the Central Europe. Plant Soil Environ 60(10):475–480

    Article  Google Scholar 

  • Hasler K, Bröring S, Omta SWF, Olfs HW (2015) Life cycle assessment (LCA) of different fertilizer product types. Eur J Agron 69:41–51

    Article  CAS  Google Scholar 

  • Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6(5):452

    Article  Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories. In Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) The national greenhouse gas inventories programme, IGES, Japan

  • IPCC (2007) Summary for Policymakers. In Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tignor, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 18

  • ISO 14040 (2006a) Environmental management–Life cycle assessment–Principles and framework. International Organization for Standardization: Geneva, Switzerland

  • ISO 14044 (2006b) Environmental management–Life cycle assessment–Requirements and guidelines; International Organization for Standardization: Geneva, Switzerland

  • Kavka M, Beneš V, Brant V (2006) Normativy Zemědělských Výrobních Technologií. Praha, Czech Republic, Institute of Agriculture Economics and Information

    Google Scholar 

  • Klímek P, Meinlschmidt P, Wimmer R, Plinke B, Schirp A (2016) Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards. Ind Crop Prod 92:157–164

    Article  Google Scholar 

  • Koeppe MK, Hirata CM, Brown HM, Kenyon WH, O’Keefe DP, Lau SC, Zimmerman WT, Green JM (2000) Basis of selectivity of the herbicide rimsulfuron in maize. Pestic Biochem Physiol 66(3):170–181

    Article  CAS  Google Scholar 

  • Kowalski R, Kędzia B (2007) Antibacterial activity of Silphium perfoliatum. Extracts Pharm Biol 45(6):494–500

    Article  Google Scholar 

  • Kowalski R, Wolski T (2005) The chemical composition of essential oils of Silphium perfoliatum L. Flavour Fragrance J 20(3):306–310

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JM, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25(4):335–361

    Article  Google Scholar 

  • Majtkowski W, Piłat J, Szulc PM (2009) Prospects of cultivation and utilization of Silphium perfoliatum L. in Poland. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 251:283–291

    Google Scholar 

  • Mast B, Lemmer A, Oechsner H, Reinhardt-Hanisch A, Claupein W, Graeff-Hönninger S (2014) Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind Crop Prod 58:194–203

    Article  CAS  Google Scholar 

  • Matthews J, Beringen R, Huijbregts MAJ, Van der Mheen HJ, Odé B, Trindade L, Van Valkenburg JLCH, Velde G, Leuven RSEW (2015) Horizon scanning and environmental risk analyses of non-native biomass crops in the Netherlands. Radboud University Nijmegen, The Netherlands

    Google Scholar 

  • Moudrý J, Bernas J, Konvalina P, Ujj A, Manolov I, Stoeva A, Rembiałkowska E, Stalenga J, Toncea I, Fitiu A, Bucur D (2018) Agroecology development in Eastern Europe—cases in Czech Republic, Bulgaria, Hungary, Poland, Romania, and Slovakia. Sustainability 10(5):1311

    Article  Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European agricultural production systems. Final report ecoinvent V2.0 No. 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zürich and Dübendorf, Switzerland, retrieved from: www.econivent.ch

  • Neugschwandtner RW, Liebhard P, Kaul HP, Wagentristl H (2014) Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ 60(2):57–62

    Article  Google Scholar 

  • Novotný I, Žížala D, Kapička J, Beitlerová H, Mistr M, Kristenová H, Papaj V (2016) Adjusting the CPmax factor in the Universal Soil Loss Equation (USLE): areas in need of soil erosion protection in the Czech Republic. J Maps 12(sup1):58–62

    Article  Google Scholar 

  • Pan G, Ouyang Z, Luo Q, Yu Q, Wang J (2011) Water use patterns of forage cultivars in the North China Plain. Int J Plant Prod 1:181–194

    Google Scholar 

  • Piłat J, Majtkowski W, Majtkowska G, Mikołajczak J, Góralska A (2007) The usefulness for ensiling of chosen plant forms of species of Silphium genus. J Cent Eur Agr 8(3):363–368

    Google Scholar 

  • Poláková J, Janků J, Nocarová M (2018) Soil erosion, regulatory aspects and farmer responsibility: assessing cadastral data. Acta Agric Scand Sect B-Soil Plant Sci 68(8):709–718

    Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596

    Article  Google Scholar 

  • Sarkar D, Kar SK, Chattopadhyay A, Rakshit A, Tripathi VK, Dubey PK, Abhilash PC (2020) Low input sustainable agriculture: a viable climate-smart option for boosting food production in a warming world. Ecol Indic 115:106412

    Article  Google Scholar 

  • Sinisterra-Solís NK, Sanjuán N, Estruch V, Clemente G (2020) Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: the influence of farm management and on-field emission modelling. J Environ Manage 262:110325

    Article  Google Scholar 

  • Sithole NJ, Magwaza LS, Mafongoya PL, Thibaud GR (2018) Long-term impact of no-till conservation agriculture on abundance and order diversity of soil macrofauna in continuous maize monocropping system. Acta Agric Scand Sect B-Soil Plant Sci 68(3):220–229

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B (2007) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B-Biol Sci 363(1492):789–813

    Article  Google Scholar 

  • Stanford G (1990) Silphium perfoliatum (cup-plant) as a new forage. Proceedings of the Twelfth North American Prairie Conference, Cedar Falls, IA 1:33–37

    Google Scholar 

  • Țîței V (2014) Biological peculiarities of cup plant (Silphium perfoliatum L.) and utilization possibilities in the Republic of Moldova. Lucrări Științifice UASMV Seria Agronomie 57(1):289–293

    Google Scholar 

  • Ţîţei V, Teleuţă A, Muntean A (2013) The perspective of cultivation and utilization of the species Silphium Perfoliatum L. and Helianthus Tuberosus L. in Moldova. Bulletin UASMV Seria Agriculture 70(1):160–166

    Google Scholar 

  • Usťak S (2012) Possibilities of cultivation of cup-plant Silphium perfoliatum L. for biogas production. Crop Research Institute, v.v.i., Prague

  • Usťak S, Munoz J (2018) Cup-plant potential for biogas production compared to reference maize in relation to the balance needs of nutrients and some microelements for their cultivation. J Environ Manage 228:260–266

    Article  Google Scholar 

  • Vacek V, Repka R (1992) Concise results of the experiment with Silphium perfoliatum L. Czechoslovak Plant Genet Resour, annual report 1991

  • Van Tassel DL, Albrecht KA, Bever JD, Boe AA, Brandvain Y, Crews TE, Gansberger M, Gerstberger P, González-Paleo L, Hulke BS, Kane NC (2017) Accelerating Silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci 57(3):1274–1284

    Article  Google Scholar 

  • Vašíčková J, Hvězdová M, Kosubová P, Hofman J (2019) Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. Chemosphere 216:479–487

    Article  Google Scholar 

  • Vinyes E, Gasol CM, Asin L, Alegre S, Muñoz P (2015) Life cycle assessment of multiyear peach production. J Clean Prod 104:68–79

    Article  Google Scholar 

  • Vogel E, Deumlich D, Kaupenjohann M (2016) Bioenergy maize and soil erosion—risk assessment and erosion control concepts. Geoderma 261:80–92

    Article  Google Scholar 

  • von Cossel M, Amarysti C, Wilhelm H, Priya N, Winkler B, Hoerner L (2020) The replacement of maize (Zea mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant. Biofuel Bioprod Biorefin 14(2):152–179

    Article  CAS  Google Scholar 

  • Webb J, Sørensen P, Velthof G, Amon B, Pinto M, Rodhe L, Salomon E, Hutchings N, Burczyk P, Reid J (2013) An assessment of the variation of manure nitrogen efficiency throughout Europe and an appraisal of means to increase manure-N efficiency. Adv Agron 119:371–442

    Article  CAS  Google Scholar 

  • Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Available at: <http://link.springer.com/10.1007/s11367-016-1087-8> [Accessed 21 10 2020].

  • World Health Organization (WHO) (2011) ISBN 978 92 4 154815 1. Guidel Drink Water Qual 398

  • Wrobel M, Frączek J, Francik S, Slipek Z, Mudryk K (2013) Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. Eng Rural Dev, Jelgava, Latvia 1:653–657

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christopher Steer (University of South Bohemia in České Budějovice-Faculty of Science, Language Department) for his proofreading of the paper and to Pedro Gerstberger (University of Bayreuth, Department of Plant Ecology, Bayreuth, Bavaria, Germany) for the material support. We finally want to warmly thank the anonymous reviewers for their comments, which improved the quality of the paper.

Funding

The research was financially supported by the University of South Bohemia in České Budějovice (project No. GAJU 045/2019/Z).

Author information

Authors and Affiliations

Authors

Contributions

Jaroslav Bernas: conceptualization, data collection, methodology, software, validation, formal analysis, investigation, resources, writing—original draft preparation, writing—review and editing, visualization, supervision; Tereza Bernasová: writing—original draft preparation, writing—review and editing, visualization, investigation; Pedro Gerstberger: material support; Jan Moudrý: material support; Petr Konvalina: supervision; Jan. Moudrý Jr.: supervision.

Corresponding author

Correspondence to Jaroslav Bernas.

Additional information

Communicated by Thomas Jan Nemecek.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernas, J., Bernasová, T., Gerstberger, P. et al. Cup plant, an alternative to conventional silage from a LCA perspective. Int J Life Cycle Assess 26, 311–326 (2021). https://doi.org/10.1007/s11367-020-01858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-020-01858-x

Keywords

Navigation