Skip to main content

Freshwater eutrophication: spatially explicit fate factors for nitrogen and phosphorus emissions at the global scale



Spatially explicit freshwater eutrophication indicators in life cycle assessment focus on phosphorus as the sole contributor to such impacts. Nitrogen may also be an ecological limiting factor in freshwater systems, but commonly not modelled. This work aims at filling this gap by consistently developing fate factors (FFs) for both dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP), using the same underlying model of nutrient export by rivers.


The present FFs were developed for application to both diffuse emissions from soil and point emissions of nutrients to freshwater. The fate processes modelled include nutrient attenuation from land to stream, in the river network, in artificial reservoirs and lakes and associated with water consumption. FFs were calculated at a river basin resolution with a global coverage and at the country and global scales by means of emission-weighting aggregation and distinguishing agricultural from non-agricultural emissions.

Results and discussion

River basin-scale FFs range from 7.7 × 10−8 to 330 days for N emissions and from 3.0 × 10−8 to 520 days for P emissions. Fate factors are aggregated at country and global scale with applicability at such scales in mind. Global average FFs (in days) are FFsoil N global = 125; FFfw N global = 257; FFsoil P global = 23; FFfw P global = 247.

Comparison of FFs calculated at various scales showed the importance of using FFs at the highest spatial resolution (i.e. river basin). However, the river basin resolution may be too coarse for certain large basins as demonstrated for the Waikato basin in New Zealand, where FFs calculated at the sub-basin scale varied significantly.

The characterisation factors represent the potential contribution of N and P to freshwater eutrophication (in Neq and Peq). The N and P components can be aggregated into a single indicator expressed in “algae-equivalent” for co-limited catchments or when the limitation status is unknown.

The present fate model for freshwater eutrophication is consistent with and complements recent advances in marine eutrophication impact assessment.


Applying these FFs in conjunction with a spatially explicit inventory data of N and P emissions may improve the environmental relevance of freshwater eutrophication impact assessment in LCA. One limitation is the focus on dissolved N and P, as highlighted by a comparison of attenuation factors with a New Zealand-specific hydrological model. The inclusion of particulate and organic N and P from NEWS2 should be part of future freshwater eutrophication FF developments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Alexander RB, Elliott AH, Shankar U, McBride GB (2002) Estimating the sources and sinks of nutrients in the Waikato Basin. Water Resour Res 38:1268–1280.

    Article  Google Scholar 

  • Azevedo LB, Cosme N, Hauschild MZ, Henderson AD, Huijbregts MAJ, Jolliet O, Larsen HF, van Zelm R (2013) Recommended assessment framework, method and characterisation and normalisation factors for ecosystem impacts of eutrophying emissions: phase 3 (report, model and factors). FP7 (243827 FP7- ENV-2009–1) LC-IMPACT report. 154 pp

  • Beusen AHW, Van Beek LPH, Bouwman AF, Mogollón JM, Middelburg JJ (2015) Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water—description of IMAGE–GNM and analysis of performance. Geosci Model Dev 8:4045–4067.

  • Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob Biogeochem Cycles 23, GB0A04.

  • Bulle C, Margni M, Patouillard L, Boulay AM, Bourgault G, Bruille VD, Cao V, Hauschild M, Henderson A, Humbert S, et al. (2019) IMPACT World+: A globally regionalized life cycle impact assessment method. Int J Life Cycle Assess 1–22.

  • Brett MT, Benjamin MM (2008) A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshwater Biol. 53:194–211.

    Article  CAS  Google Scholar 

  • Cosme N, Hauschild MZ (2018) Characterization of waterborne nitrogen emissions for marine eutrophication modelling in life cycle impact assessment at the damage level and global scale. Int J Life Cycle Assess 22:1558–1570.

    Article  CAS  Google Scholar 

  • Cosme N, Mayorga E, Hauschild MZ (2017) Spatially explicit fate factors for waterborne nitrogen emissions at the global scale. Int J Life Cycle Assess 23:1286–1296.

    Article  CAS  Google Scholar 

  • Cosme N, Jones MC, Cheung WWL, Larsen HF (2016) Spatial differentiation of marine eutrophication damage indicators based on species density. Ecol Indic 73:676–685.

    Article  CAS  Google Scholar 

  • Cournane FC, McDowell R, Littlejohn R, Condron L (2011) Effects of cattle, sheep and deer grazing on soil physical quality and losses of phosphorus and suspended sediment losses in surface runoff. Agr Ecosyst Environ 140:264–272.

    Article  CAS  Google Scholar 

  • Dumont E, Harrison JA, Kroeze C, Bakker EJ, Seitzinger SP (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochem Cy 19:GB4S02.

  • Environmental Systems Research Institute (ESRI) (2017) ArcGIS Pro v2.0. Redlands, CA

  • European Commission (2019) Single Market for Green Products Initiative. Accessed 12.03.2019

  • Elsaholi M, Kelly-Quinn M (2013) The effect of nutrient concentrations and ratios on periphyton biomass in low conductivity streams: implications for determination of nutrient limitation. Inland Waters 3:451–458.

    Article  CAS  Google Scholar 

  • Elliott AH, Semadeni-Davies AF, Shankar U, Zeldis JR, Wheeler DM, Plew DR, Rys GJ, Harris SR (2016) A national-scale GIS-based system for modelling impacts of land use on water quality. Environ Model Soft 86:131–144.

    Article  Google Scholar 

  • Elliott AH, Stroud MJ (2001) Prediction of nutrient loads entering Lake Taupo under various land use scenarios. NIWA Client Report EVW01224. National Institute of Water and Atmospheric Research, Hamilton, New Zealand

  • Goedkoop M, Heijungs R, Huijbregts M, de Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008-A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level – First Edition Report I: Characterisation - Supporting Information

  • Harrison JA, Bouwman AF, Mayorga E, Seitzinger SP (2010) Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: a new global model. Global Biogeochem Cy 24:GB1003.

  • Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe P-A, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM (2009) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93:143.

    Article  CAS  Google Scholar 

  • Harrison JA, Caraco NF, Seitzinger SP (2005) Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cy 19:GB4S04.

  • Hassett RP, Cardinale B, Stabler LB, Elser JJ (1997) Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnol Oceanogr 42:648–662.

    Article  CAS  Google Scholar 

  • Hauschild MZ, Huijbregts MAJ (2015) Introducing Life Cycle Impact Assessment. In: Hauschild MZ, Huijbregts MAJ (eds) Life cycle impact assessment, LCA compendium - the complete world of life cycle assessment. Springer Science+Business Media, Dordrecht, pp 1–16

    Google Scholar 

  • Hauschild MZ, Potting J (2005) Spatial differentiation in LCA impact assessment - The EDIP2003 methodology. (Environmental News No. 802005). Copenhagen, Denmark: Danish Ministry of the environment

  • Hauschild MZ (2005) Assessing environmental impacts in a life-cycle perspective. Environ Sci Technol 39:81–88.

    Article  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724.

    Article  CAS  Google Scholar 

  • Heijungs R, Guinee JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, Van Duin R, De Goede HP (1992) Environmental life cycle assessment of products. Guidelines and Backgrounds, Centre of Environmental Sciences, Leiden

    Google Scholar 

  • Helmes RJK, Huijbregts MAJ, Henderson AD, Jolliet O (2012) Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int J Life Cycle Assess 17:646–654.

    Article  CAS  Google Scholar 

  • HellwegMilà i Canals L, S (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113.

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Van Zelm R (2016) ReCiPe2016. A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Report I: Characterization. Department of Environmental Science, Radboud University Nijmegen

  • Huijbregts MAJ, Seppälä J (2001) Life cycle impact assessment of pollutants causing aquatic eutrophication. Int J Life Cycle Assess 6:339–344.

    Article  CAS  Google Scholar 

  • HydroLAKES (2016) Technical Documentation Version 1.0. Prepared by Bernhard Lehner and Mathis Messager. McGill University, Montreal, Quebec, Canada. 16p

  • ISO (2006a) ISO 14044: Environmental management - life cycle assessment requirements and guidelines. ISO, Geneva, Switzerland

    Google Scholar 

  • ISO (2006b) ISO 14040: Environmental management - life cycle assessment principles and framework. ISO, Geneva, Switzerland

    Google Scholar 

  • Klepper O, Beusen AHW, Meinardi CR (1995) Modelling the flow of nitrogen and phosphorus in Europe: From loads to coastal seas. Bilthoven, the Netherlands

  • Kroeze C, Bouwman L, Seitzinger S (2012) Modeling global nutrient export from watersheds. Environ Sustain 4:195–202.

    Article  Google Scholar 

  • Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete BM, Kroeze C, Van Drecht G (2010) Global Nutrient Export from WaterSheds 2 (NEWS 2): model development and implementation. Environ Model Soft 25:837–853.

    Article  Google Scholar 

  • McDowell R, Larned S (2008) Surface water quality and nutrients: what should the focus be? in: L.D. Curries and L.J. Yates. In: Carbon and Nutrient Management in Agriculture. Massey University, Palmertson North, NZ. Report No 21. FLRC

  • Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun. 13603. Data is available at

  • Mutel C, Liao X, Patouillard L, Bare J, Fantke P, Frischknecht R, Hauschild MZ, Jolliet O, Maia de Souza D, Laurent A, Pfister S, Verones F (2019) Overview and recommendations for regionalized life cycle impact assessment. Int J Life Cycle Assess.

    Article  Google Scholar 

  • Nevison C, Hess P, Riddick S, Ward D (2016) Denitrification, leaching, and river nitrogen export in the Community Earth System Model. J Adv Model Earth Syst 8:272–291.

    Article  Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, Ditoro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owens NJP, Pilson MEQ, Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land sea margin of the North Atlantic Ocean. Biogeochemistry. 35:141–180.

  • Ogbebo FE, Evans MS, Waiser MJ, Tumber VP, Keating JJ (2009) Nutrient limitation of phytoplankton growth in Arctic lakes of the lower Mackenzie River Basin, northern Canada. Can J Fish Aquat Sci 66:247–260.

    Article  CAS  Google Scholar 

  • Payen S, Falconer S, Carlson B, Yang W, Ledgard S (2020) Eutrophication and climate change impacts of a case study of New Zealand beef to the European market. Sci Total Environ 710:136120.

    Article  CAS  Google Scholar 

  • Payen S, Ledgard S (2017) Aquatic Eutrophication indicators in LCA: methodological challenges illustrated using a case study in New Zealand. J Clean Prod 168:1463–1472.

    Article  CAS  Google Scholar 

  • Pearson LK, Hendy CH, Hamilton DP (2016) Dynamics of silicon in lakes of the Taupo Volcanic Zone, New Zealand, and implications for diatom growth. Inland Waters 6:185–198.

    Article  CAS  Google Scholar 

  • Potting J, Beusen A, Øllgaard H, Hansen OC, De Haan B, Hauschild M (2005) Aquatic eutrophication. In: Potting J, Hauschild M (eds): Technical background for spatial differentiation in life cycle impact assessment. Copenhagen: Danish Environmental Protection Agency

  • Rabalais NN, Turner RE, Diaz RJ, Justić D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Schwarz GE, Hoos AB, Alexander RB, Smith RA (2006) The SPARROW Surface Water-Quality Model-Theory, Application and User Documentation. U.S. Geological Survey Techniques and Methods. Book 6-B3, 248 pp

  • Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cy 24:GB0A08.

  • Seitzinger SP, Styles RV, Boyer EW, Alexander RB, Billen G, Howarth RW, Mayer B, Van Breemen N (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeochemistry 57/58:199–237

  • Seitzinger SP, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090.[2064:DALAWA]2.0.CO;2

    Article  CAS  Google Scholar 

  • Semadeni-Davies A, Elliott S, Yalden S (2015) Modelling nutrient loads in the Waikato and Waipa River Catchments. Development of catchment-scale models. NIWA Client Report, HAM2015–089:78

  • Sterner RW (2008) On the Phosphorus Limitation Paradigm for Lakes 93:433–445.

    Article  CAS  Google Scholar 

  • Smith RA, Schwarz GE, Alexander RB (1997) Regional interpretation of water-quality monitoring data. Water Resour Res 33:2781–2798

    Article  CAS  Google Scholar 

  • Struijs J, De Zwart D, Posthuma L, Leuven RSEW, Huijbregts MAJ (2011) Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integr Environ Assess Manag 7:280–286.

    Article  CAS  Google Scholar 

  • Struijs J, Beusen A, van Jaarsveld H, Huijbregts MAJ (2009) Aquatic eutrophication. Chapter 6. In: Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, Van Zelm R (eds): ReCiPe 2008 a Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Report I: Characterisation factors (first edition)

  • UNEP (2019) Chapter 3: Acidification and Eutrophication. In: Frischknecht R., Jolliet O. (Eds.), Global guidance on environmental life cycle impact assessment indicators – Volume 2. UNEP/SETAC Life Cycle Initiative. Retrieved from

  • Van Drecht G, Bouwman AF, Harrison J, Knoop JM (2009) Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob Biogeochem Cycles 23, GB0A03.

  • Van Jaarsveld JA (1995) Modelling the long-term atmospheric behaviour of pollutants on various spatial scales. PhD Thesis. University of Utrecht

  • Verburg P, Schallenberg M, Elliott S, McBride CG (2018) Nutrient budgets in lakes. In: Lake Restoration Handbook: A New Zealand Perspective. Eds: Hamilton D.P., Collier K.J., Quinn J.M., Howard-Williams C. Springer Nature

  • Verones F, Huijbregts M, Azevedo L, Chaudhary A, Cosme N, de Baan L, Fantke P, Hauschild M, Henderson A, Jolliet O, Mutel M, Owsianiak M, Pfister S, Preiss P, Roy P-O, Scherer L, Steinmann Z, van Zelm R, Van Dingenen R, van Goethem T, Vieira M, Hellweg S (2019) LC-IMPACT : A spatially differentiated life cycle impact assessment approach – version 1.0. Retrieved from

  • Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Chang 39:169–190.

    Article  Google Scholar 

  • Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem Cy 14:599–621.

    Article  Google Scholar 

  • Wheeler DM, Ledgard SF, Monaghan RM (2007) Role of the OVERSEER® nutrient budget model in nutrient management plans, in: Currie, L.D., Yates, L.J. (Eds). Designing Sustainable Farms: Critical Aspects of Soil and Water Management, Report No. 20. FLRC, Massey University, Palmerston North, New Zealand, pp 53–58

  • Windolf J, Jeppesen E, Jensen JP, Kristensen P (1996) Modelling of seasonal variation in nitrogen retention and in-lake concentration: a four-year mass balance study in 16 shallow Danish lakes. Biogeochemistry 33:25–44.

    Article  Google Scholar 

Download references


The authors thank AGMARDT for a Post-Doctoral Fellowship for the senior author and AgResearch for research support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sandra Payen.

Additional information

Communicated by Mark Huijbregts.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 457 KB)

Supplementary file2 (DOCX 642 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payen, S., Cosme, N. & Elliott, A.H. Freshwater eutrophication: spatially explicit fate factors for nitrogen and phosphorus emissions at the global scale. Int J Life Cycle Assess 26, 388–401 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: