Ardente F, Mathieux F (2014) Environmental assessment of the durability of energy-using products: method and application. J Clean Prod 74:62–73. https://doi.org/10.1016/j.jclepro.2014.03.049
Article
Google Scholar
Bakker C, Wang F, Huisman J, den Hollander M (2014) Products that go round: exploring product life extension through design. J Clean Prod 69:10–16. https://doi.org/10.1016/j.jclepro.2014.01.028
Article
Google Scholar
Baustert P, Benetto E (2017) Uncertainty analysis in agent-based modelling and consequential life cycle assessment coupled models: a critical review. J Clean Prod 156:378–394. https://doi.org/10.1016/j.jclepro.2017.03.193
Article
Google Scholar
Baustert P, Gutiérrez TN, Gibon T, Chion L, Ma T-Y, Mariante GL, Klein S, Gerber P, Benetto E (2019) Coupling activity-based modeling and life cycle assessment—a proof-of-concept study on cross-border commuting in Luxembourg. Sustainability 11:4067. https://doi.org/10.3390/su11154067
Article
Google Scholar
Beaussier T, Caurla S, Bellon-Maurel V, Loiseau E (2019) Coupling economic models and environmental assessment methods to support regional policies: a critical review. J Clean Prod 216:408–421. https://doi.org/10.1016/j.jclepro.2019.01.020
Article
Google Scholar
Beloin-Saint-Pierre D, Heijungs R, Blanc I (2014) The ESPA (Enhanced Structural Path Analysis) method: a solution to an implementation challenge for dynamic life cycle assessment studies. Int J Life Cycle Assess 19:861–871. https://doi.org/10.1007/s11367-014-0710-9
Article
Google Scholar
Benedetto, G., Rugani, B., Vázquez-Rowe, I., 2014. Rebound effects due to economic choices when assessing the environmental sustainability of wine. Food Policy 49, Part 1, 167–173. https://doi.org/10.1016/j.foodpol.2014.07.007
Bole R (2006) Life-cycle optimization of residential clothes washer replacement (no. CSS06-03). Center for Sustainable Systems, University of Michigan, Ann Arbor, Michigan
Brandão M, Martin M, Cowie A, Hamelin L, Zamagni A (2017) Consequential life cycle assessment: what, how, and why? In: Encyclopedia of sustainable technologies. Elsevier, pp 277–284. https://doi.org/10.1016/B978-0-12-409548-9.10068-5
Cardellini G, Mutel CL, Vial E, Muys B (2018) Temporalis, a generic method and tool for dynamic life cycle assessment. Sci Total Environ 645:585–595. https://doi.org/10.1016/j.scitotenv.2018.07.044
CAS
Article
Google Scholar
Chalmers NG, Brander M, Revoredo-Giha C (2015) The implications of empirical and 1:1 substitution ratios for consequential LCA: using a 1% tax on whole milk as an illustrative example. Int J Life Cycle Assess 20:1268–1276. https://doi.org/10.1007/s11367-015-0939-y
Article
Google Scholar
Collinge WO, Landis AE, Jones AK, Schaefer LA, Bilec MM (2013) Dynamic life cycle assessment: framework and application to an institutional building. Int J Life Cycle Assess 18:538–552. https://doi.org/10.1007/s11367-012-0528-2
CAS
Article
Google Scholar
Cooper DR, Gutowski TG (2017) The environmental impacts of reuse: a review. J Ind Ecol 21:38–56. https://doi.org/10.1111/jiec.12388
Article
Google Scholar
De Kleine RD, Keoleian GA, Kelly JC (2011) Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US. Energy Policy 39:3144–3153. https://doi.org/10.1016/j.enpol.2011.02.065
Article
Google Scholar
Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453. https://doi.org/10.1007/s11367-011-0275-9
Article
Google Scholar
Earles JM, Halog A, Ince P, Skog K (2013) Integrated economic equilibrium and life cycle assessment modeling for policy-based consequential LCA. J Ind Ecol 17:375–384. https://doi.org/10.1111/j.1530-9290.2012.00540.x
Article
Google Scholar
Ekvall T (2000) Moral philosophy, economics, and life cycle inventory analysis (SAE technical paper no. 2000-01-1479). SAE International, Warrendale. https://doi.org/10.4271/2000-01-1479
Book
Google Scholar
Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9:161–171. https://doi.org/10.1007/BF02994190
Article
Google Scholar
Ekvall T, Azapagic A, Finnveden G, Rydberg T, Weidema BP, Zamagni A (2016) Attributional and consequential LCA in the ILCD handbook. Int J Life Cycle Assess 21:293–296. https://doi.org/10.1007/s11367-015-1026-0
Article
Google Scholar
European Commission (2016) Environmental Footprint Pilot Guidance document, − guidance for the implementation of the EU Product Environmental Footprint (PEF) during the Environmental Footprint (EF) pilot phase, version 5.2, February 2016
Eurostat (2017) Average CO2 emissions per km from new passenger cars, EU-27 and EU-28, 2007–2017 [WWW Document]. URL https://ec.europa.eu/eurostat/statistics-explained/images/b/ba/Average_CO2_emissions_per_km_from_new_passenger_cars%2C_EU-27_and_EU-28%2C_2007-2017_%28g_CO%E2%82%82_per_km%29.png (accessed 1.4.20)
Fauzi RT, Lavoie P, Sorelli L, Heidari MD, Amor B (2019) Exploring the current challenges and opportunities of life cycle sustainability assessment. Sustainability 11:636. https://doi.org/10.3390/su11030636
Article
Google Scholar
Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21. https://doi.org/10.1016/j.jenvman.2009.06.018
Article
Google Scholar
Gloria T, Guinée J, Kau HW, Singh B, Lifset R (2017) Charting the future of life cycle sustainability assessment: a special Issue: Charting the Future of LCSA. J. Ind. Ecol. https://doi.org/10.1111/jiec.12711
Guinée J (2016) Life cycle sustainability assessment: what is it and what are its challenges? In: Clift R, Druckman A (eds) taking stock of industrial ecology. Springer International Publishing, pp 45–68. https://doi.org/10.1007/978-3-319-20571-7_3
Hauschild MZ, Rosenbaum RK, Olsen SI (eds) (2018) Life cycle assessment. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56475-3
Book
Google Scholar
Hellweg S, Canals LMI (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113. https://doi.org/10.1126/science.1248361
CAS
Article
Google Scholar
Hertwich EG, Gibon T, Bouman EA, Arvesen A, Suh S, Heath GA, Bergesen JD, Ramirez A, Vega MI, Shi L (2014) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci 201312753:6277–6282. https://doi.org/10.1073/pnas.1312753111
CAS
Article
Google Scholar
Holland PW (1986) Statistics and causal inference. J Am Stat Assoc 81:945–960. https://doi.org/10.1080/01621459.1986.10478354
Article
Google Scholar
Horie YA (2004) Life cycle optimization of household refrigerator-freezer replacement (no. CSS04-13). Center for Sustainable Systems, University of Michigan, Ann Arbor, Michigan
Igos E, Rugani B, Rege S, Benetto E, Drouet L, Zachary DS (2015) Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios. Appl Energy 145:234–245. https://doi.org/10.1016/j.apenergy.2015.02.007
Article
Google Scholar
Igos E, Benetto E, Meyer R, Baustert P, Othoniel B (2018) How to treat uncertainties in life cycle assessment studies? Int J Life Cycle Assess 24:1–14. https://doi.org/10.1007/s11367-018-1477-1
Article
Google Scholar
ISO (2006a) ISO 14040: Environmental management-life cycle assessment-principles and framework
ISO (2006b) ISO 14044: Environmental management-life cycle assessment-requirements and guidelines
JRC-IES (2010) ILCD handbook: general guide for life cycle assessment-detailed guidance. Publications Office of the European Union, Luxembourg
Google Scholar
Kagawa S, Hubacek K, Nansai K, Kataoka M, Managi S, Suh S, Kudoh Y (2013) Better cars or older cars?: assessing CO2 emission reduction potential of passenger vehicle replacement programs. Glob Environ Chang 23:1807–1818. https://doi.org/10.1016/j.gloenvcha.2013.07.023
Article
Google Scholar
Kätelhön A, Bardow A, Suh S (2016) Stochastic technology choice model for consequential life cycle assessment. Environ Sci Technol 50:12575–12583. https://doi.org/10.1021/acs.est.6b04270
CAS
Article
Google Scholar
Kiatkittipong W, Wongsuchoto P, Meevasana K, Pavasant P (2008) When to buy new electrical/electronic products? J Clean Prod 16:1339–1345. https://doi.org/10.1016/j.jclepro.2007.06.019
Article
Google Scholar
Kim HC, Keoleian GA, Grande DE, Bean JC (2003) Life cycle optimization of automobile replacement: model and application. Environ Sci Technol 37:5407–5413. https://doi.org/10.1021/es0345221
CAS
Article
Google Scholar
Kim HC, Keoleian GA, Horie YA (2006) Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost. Energy Policy 34:2310–2323. https://doi.org/10.1016/j.enpol.2005.04.004
Article
Google Scholar
Kuczenski B (2019) False confidence: are we ignoring significant sources of uncertainty? Int J Life Cycle Assess 24:1760–1764. https://doi.org/10.1007/s11367-019-01623-9
Article
Google Scholar
Lenski SM, Keoleian GA, Bolon KM (2010) The impact of ‘Cash for Clunkers’ on greenhouse gas emissions: a life cycle perspective. Environ Res Lett 5:044003. https://doi.org/10.1088/1748-9326/5/4/044003
CAS
Article
Google Scholar
Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44:3169–3174. https://doi.org/10.1021/es9030003
CAS
Article
Google Scholar
Levasseur A, Brandão M, Lesage P, Margni M, Pennington D, Clift R, Samson R (2011) Valuing temporary carbon storage. Nat Clim Chang 2:6–8. https://doi.org/10.1038/nclimate1335
CAS
Article
Google Scholar
Liu L, Keoleian GA, Saitou K (2017) Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions. Environ Res Lett 12:114034. https://doi.org/10.1088/1748-9326/aa9447
Article
Google Scholar
Marvuglia A, Benetto E, Rege S, Jury C (2013) Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sust Energ Rev 25:768–781. https://doi.org/10.1016/j.rser.2013.04.031
CAS
Article
Google Scholar
Marvuglia A, Rege S, Navarrete Gutiérrez T, Vanni L, Stilmant D, Benetto E (2017) A return on experience from the application of agent-based simulations coupled with life cycle assessment to model agricultural processes. J Clean Prod 142(Part 4):1539–1551. https://doi.org/10.1016/j.jclepro.2016.11.150
Article
Google Scholar
Messagie M, Boureima F, Sergeant N, Timmermans J-M, Macharis C, Van Mierlo J (2012) Environmental breakeven point: an introduction into environmental optimization for passenger car replacement schemes. Presented at the Urban Transport 2012, A Coruna, Spain, pp. 39–49. https://doi.org/10.2495/UT120041
Micolier A, Loubet P, Taillandier F, Sonnemann G (2019) To what extent can agent-based modelling enhance a life cycle assessment? Answers based on a literature review. J Clean Prod 118123:118123. https://doi.org/10.1016/j.jclepro.2019.118123
Article
Google Scholar
Mill, J.S., 1843. A system of logic
Google Scholar
Nakamoto Y (2017) CO2 reduction potentials through the market expansion and lifetime extension of used cars. J Econ Struct 6:17. https://doi.org/10.1186/s40008-017-0080-0
Article
Google Scholar
Nakamoto Y, Kagawa S (2018) Role of vehicle inspection policy in climate mitigation: the case of Japan. J Environ Manag 224:87–96. https://doi.org/10.1016/j.jenvman.2018.07.028
Article
Google Scholar
Navarrete-Gutiérrez T, Rege S, Marvuglia A, Benetto E (2015) Introducing LCA results to ABM for assessing the influence of sustainable behaviours. In: Bajo J, Hernández JZ, Mathieu P, Campbell A, Fernández-Caballero A, Moreno MN, Julián V, Alonso-Betanzos A, Jiménez-López MD, Botti V (eds) Trends in practical applications of agents, multi-agent systems and sustainability, advances in intelligent systems and computing. Springer International Publishing, pp 185–196. https://doi.org/10.1007/978-3-319-19629-9_21
Nishijima D (2016) Product lifetime, energy efficiency and climate change: a case study of air conditioners in Japan. J Environ Manag 181:582–589. https://doi.org/10.1016/j.jenvman.2016.07.010
CAS
Article
Google Scholar
Pérez-Belis V, Bakker C, Juan P, Bovea MD (2017) Environmental performance of alternative end-of-life scenarios for electrical and electronic equipment: a case study for vacuum cleaners. J Clean Prod 159:158–170. https://doi.org/10.1016/j.jclepro.2017.05.032
Article
Google Scholar
Pigné Y, Gutiérrez TN, Gibon T, Schaubroeck T, Popovici E, Shimako AH, Benetto E, Tiruta-Barna L (2019) A tool to operationalize dynamic LCA, including time differentiation on the complete background database. Int J Life Cycle Assess 25:267–279. https://doi.org/10.1007/s11367-019-01696-6
Article
Google Scholar
Pizzol M, Scotti M (2016) Identifying marginal supplying countries of wood products via trade network analysis. Int J Life Cycle Assess 22:1–13. https://doi.org/10.1007/s11367-016-1222-6
Article
Google Scholar
Plevin RJ, Delucchi MA, Creutzig F (2014) Using Attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18:73–83. https://doi.org/10.1111/jiec.12074
Article
Google Scholar
Presutto M, Stamminger R, Scialdoni R, Mebane W, Esposito R (2007) Preparatory studies for eco-design requirements of EuPs (Tender TREN/D1/40-2005) LOT 13: Domestic Refrigerators & Freezers
Querini F, Benetto E (2015) Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies. Environ Sci Technol 49:1744–1751. https://doi.org/10.1021/es5060868
CAS
Article
Google Scholar
Querini F, Benetto E (2017) Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies. Environ Sci Technol 51:1939–1939. https://doi.org/10.1021/acs.est.7b00079
CAS
Article
Google Scholar
Sacchi R (2018) A trade-based method for modelling supply markets in consequential LCA exemplified with Portland cement and bananas. Int J Life Cycle Assess 23:1966–1980. https://doi.org/10.1007/s11367-017-1423-7
Article
Google Scholar
Schaubroeck T, Benetto E (2018) A need for a better characterisation of product benefit in life cycle sustainability assessment. Presented at the SETAC Europe 28th Annual Meeting, Rome, Italy
Schaubroeck T, Rugani B (2017) A revision of what life cycle sustainability assessment should entail: towards modeling the net impact on human well-being. J Ind Ecol 21:1464–1477. https://doi.org/10.1111/jiec.12653
Article
Google Scholar
Schrijvers D (2017) Evaluation environnementale des options de recyclage selon la méthodologie d’analyse de cycle de vie: établissement d’une approche cohérente appliquée aux études de cas de l’industrie chimique (PhD Thesis). Université de Bordeaux
Schrijvers DL, Loubet P, Sonnemann G (2016) Developing a systematic framework for consistent allocation in LCA. Int J Life Cycle Assess 21:1–18. https://doi.org/10.1007/s11367-016-1063-3
Article
Google Scholar
Skelton ACH, Allwood JM (2013) Product Life Trade-Offs: What If Products Fail Early? Environ Sci Technol 47:1719–1728. https://doi.org/10.1021/es3034022
Sloan TW (2011) Green renewal: incorporating environmental factors in equipment replacement decisions under technological change. J Clean Prod 19:173–186. https://doi.org/10.1016/j.jclepro.2010.08.017
Article
Google Scholar
Spielmann M, Althaus H-J (2007) Can a prolonged use of a passenger car reduce environmental burdens? Life cycle analysis of Swiss passenger cars. J Clean Prod 15:1122–1134. https://doi.org/10.1016/j.jclepro.2006.07.022
Article
Google Scholar
Tasaki T, Motoshita M, Uchida H, Suzuki Y (2013) Assessing the replacement of electrical home appliances for the environment. J Ind Ecol 17:290–298. https://doi.org/10.1111/j.1530-9290.2012.00551.x
Article
Google Scholar
Tietge U, Mock P, Dornoff J (2019) CO2 emissions from new passenger cars in the European Union: Car manufacturers’ performance in 2018. The International Council on Clean Transportation
UNEP-SETAC Life Cycle Initiative (2011) Global Guidance Principles for Life Cycle Assessment Databases; a basis for greener processes and products. “Shonan guidance principles”.
Vandepaer L, Treyer K, Mutel C, Bauer C, Amor B (2019) The integration of long-term marginal electricity supply mixes in the ecoinvent consequential database version 3.4 and examination of modeling choices. Int. J. Life Cycle Assess 24:1409–1428. https://doi.org/10.1007/s11367-018-1571-4
Article
Google Scholar
Vázquez-Rowe I, Marvuglia A, Rege S, Benetto E (2014) Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Sci Total Environ 472:78–89. https://doi.org/10.1016/j.scitotenv.2013.10.097
CAS
Article
Google Scholar
Weidema BP (2003) Market information in life cycle assessment. Copenhagen: Danish Environmental Protection Agency. (Environmental Project no.863)
Weidema BP, Wesnæs M, Hermansen J, Kristensen T, Halberg N (2008) Environmental improvement potentials of meat and dairy products. European Commission – Joint Research Centre – Institute for Prospective Technological Studies, Luxembourg: Office for Official Publications of the European Communities 2008
Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Vadenbo C, Wernet G (2013) Overview and methodology. Data quality guidelines for the ecoinvent database version 3, Ecoinvent report 1 (v3). The ecoinvent Centre
Weidema BP, Pizzol M, Schmidt J, Thoma G (2018) Attributional or consequential life cycle assessment: a matter of social responsibility. J Clean Prod 174:305–314. https://doi.org/10.1016/j.jclepro.2017.10.340
Article
Google Scholar
Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8
Article
Google Scholar
Yang Y (2016) Two sides of the same coin: consequential life cycle assessment based on the attributional framework. J Clean Prod 127:274–281. https://doi.org/10.1016/j.jclepro.2016.03.089
Article
Google Scholar
Yang Y (2019) A unified framework of life cycle assessment. Int J Life Cycle Assess 24:620–626. https://doi.org/10.1007/s11367-019-01595-w
Article
Google Scholar
Yang Y, Heijungs R (2017) On the use of different models for consequential life cycle assessment. Int J Life Cycle Assess 23:1–8. https://doi.org/10.1007/s11367-017-1337-4
Article
Google Scholar
Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918. https://doi.org/10.1007/s11367-012-0423-x
Article
Google Scholar
Zink T, Geyer R, Startz R (2015) A market-based framework for quantifying displaced production from recycling or reuse. J Ind Ecol 20:719–729. https://doi.org/10.1111/jiec.12317
Article
Google Scholar