Skip to main content

Environmental impacts of a highly congested section of the Pan-American highway in Peru using life cycle assessment



Road construction and transportation generate significant environmental impacts. Hence, it is increasingly important to understand the environmental burdens produced throughout the different stages of road development: construction, maintenance, traffic, and end-of-life. In this study, life cycle assessment (LCA) was used as an environmental management methodology to determine the impacts associated with a 22.4 km stretch of the South Pan-American (PS) highway in the province of Lima, Peru, one of the main access routes for traffic and goods entering Lima, located in a hyper-arid area parallel to the Pacific Ocean.


Life cycle modeling included the site-specific estimation of particulate matter emissions due to tire abrasion, brake lining, and road surface dust. In addition, different modeling options for combustion emissions for vehicles were considered. For this, sensitivity and uncertainty analysis were undertaken considering different emission standards and current vehicle fleet characteristics. The impact assessment stage included the calculation of climate change emissions, as well as air quality and abiotic depletion impact categories.

Results and discussion

Results demonstrate that environmental impacts are mainly attributable to traffic, representing in all impact categories assessed over 97% of burdens. The sensitivity analysis suggests that the use of secondary data from commonly used life cycle databases is a good proxy for the estimation of global warming potential impacts in the transport sector. However, for air quality categories, important variability was detected based on modeling assumptions.


This study intends to serve as a reference for the life cycle modeling of controlled access highways in developing countries, particularly in hyper-arid or desert areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    The national network in 2012 represented ca. 17.5% of the total road network in Peru, approximately 25,000 km of a total of 140,000 km (INEI 2018).

  2. 2.

    Although there is a lack of official values, the Ministry of the Environment (MINAM) estimates that 50–60% of vehicles use diesel as the energy carrier (MINAM 2014).

  3. 3.

    NDCs only account for the mitigation of three GHGs: carbon dioxide, methane, and dinitrogen monoxide.


  1. Ahmed K (2012) Getting to green: a sourcebook of pollution management policy tools for growth and competitiveness. World Bank, Washington, DC Retrieved from: Latest acces: November 21st 2017

    Google Scholar 

  2. Azari-Jafari H, Yahia A, Amor MB (2016) Life cycle assessment of pavements: reviewing research challenges and opportunities. J Clean Prod 112:2187–2197

    Article  Google Scholar 

  3. Azari-Jafari H, Yahia A, Amor B (2018) Assessing the individual and combined effects of uncertainty and variability sources in comparative LCA of pavements. Int J Life Cycle Assess 23:1888–1902

    CAS  Article  Google Scholar 

  4. Bauer C, Hofer J, Althaus HJ, Del Duce A, Simons A (2015) The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework. Appl Energy 157:871–883

    Article  Google Scholar 

  5. Bennett CR, Greenwood ID (2001) Modelling road user and environmental effects in HDM-4. World road association (PIARC), Paris. The World Bank, Washington, DC

    Google Scholar 

  6. Birgisdóttir H, Christensen TH (2005) Life cycle assessment model for road construction and use of residues from waste incineration (Doctoral dissertation, Technical University of Denmark Danmarks Tekniske Universitet, Department of Environmental Science and Engineering Institut for Miljøteknologi)

  7. Cakmak S, Hebbern C, Cakmak JD, Vanos J (2016) The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren. J Environ Manag 177:1–8

    Article  Google Scholar 

  8. Cárdenas U, Kahhat R, Vázquez-Rowe I, García-Torres S (2017) GHG Emissions Reductions Linked to Introducing Electric Vehicles in the City of Lima, Peru. Poster presentation. ISIE-ISSSN Conference, Chicago, June 2017

  9. Carlson A (2011) Life cycle assessment of roads and pavements: Studies made in Europe. VTI Rapport 736A. Print

  10. Ciroth A, Muller S, Weidema B, Lesage P (2016) Empirically based uncertainty factors for the pedigree matrix in ecoinvent. Int J Life Cycle Assess 21(9):1338–1348

  11. Congreso de la República (2016) Ley que declara de necesidad pública y de interés nacional la ejecución del proyecto de interconexión carretera Iquitos Selva – Costa Norte. Proyecto de Ley N°479/2016-CR. Peruvian Congress. Retrieved from: Last accessed: November 1st 2017 [in Spanish]

  12. Cowherd C, Englehart PJ (1985) Size specific particulate emission factors for industrial and rural roads, EPA-600/7-85-038, U. S. Environmental Protection Agency, Cincinnati, OH, September 1985

  13. De Vlieger I, De Keukeleere D, Kretzschmar JG (2000) Environmental effects of driving behaviour and congestion related to passenger cars. Atmos Environ 34(27):4649–4655

    Article  Google Scholar 

  14. Ecoinvent (2017) Ecoinvent v3.2 database. Ecoinvent Centre. Retrieved from: Latest access: June 25th 2017

  15. EEA (2016) EMEP/EEA emission inventory guidebook 2016. European Environment Agency. Retrieved from: Latest access: November 21st 2017

  16. Egilmez G, Tatari O (2012) A dynamic modeling approach to highway sustainability: strategies to reduce overall impact. Transp Res A Policy Pract 46(7):1086–1096

    Article  Google Scholar 

  17. EMEP-Corinair (2014) EMEP/EEA emission inventory guidebook 2016 update Sept 2014

  18. EPA (2014) Brake and Tire Wear Emissions from On-road Vehicles in MOVES2014. US Environmental Protection Agency.

  19. EPA (2017) AP 42 Section 13.2.1 Paved Roads. US Environmental Protection Agency. Retrieved from: Access 25 Nov 2018

  20. Ercan T, Kucukvar M, Tatari O, Al-Deek H (2013) Congestion relief based on intelligent transportation systems in Florida: analysis of triple bottom line sustainability impact. Transp Res Rec 2380(1):81–89

    Article  Google Scholar 

  21. Ericsson E (2001) Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transp Res Part D: Transp Environ 6(5):325–345

    Article  Google Scholar 

  22. Facanha C, Horvath A (2007) Evaluation of life-cycle air emission factors of freight transportation. Environ Sci Technol 41(20):7138–7144

    CAS  Article  Google Scholar 

  23. Fernández-Sánchez G, Berzosa Á, Barandica JM, Cornejo E, Serrano JM (2015) Opportunities for GHG emissions reduction in road projects: a comparative evaluation of emissions scenarios using CO2NSTRUCT. J Clean Prod 104:156–167

    Article  Google Scholar 

  24. Gallardo J (2016) Gobierno Prevé pavimentar 100% de vías nacionales recibidas en el 2011. Constructivo, Lima Retrieved from: Latest access: May 12th 2017 (in Spanish)

    Google Scholar 

  25. García R, Miyashiro J, Rubio D, Santa Cruz P, Marces R (2015) Perú hoy: desarrollo o crecimiento urbano en Lima: el caso de los distritos del Sur. Perú Hoy, desco 25pp (in Spanish)

  26. Garg BD, Cadle SH, Mulawa PA, Groblicki PJ, Laroo C, Parr GA (2000) Brake wear particulate matter emissions. Environ Sci Technol 34(21):4463–4469

    CAS  Article  Google Scholar 

  27. Glasson J, Therivel R, Chadwick A (2013) Introduction to environmental impact assessment, 4th edn. Routledge ISBN: 978-0-415-66468-4

  28. Goedkoop M, Heijungs R, Huijbregts M, de Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Report I: Characterisation. Ministry of Housing, Spatial Planning and Environment (VROM). Retrieved from: Latest access November 21st 2017

  29. Hakkinen T, Mäkelä K (1996) Environmental impact of concrete and asphalt pavements, in environmental adaption of concrete. Technical Research Center of Finland Research Notes 1752. ISBN: 951-38-4907-4

  30. Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360(9341):1203–1209

    Article  Google Scholar 

  31. Huang Y, Bird R, Bell M (2009a) A comparative study of the emissions by road maintenance works and the disrupted traffic using life cycle assessment and micro-simulation. Transp Res Part D: Transp Environ 14(3):197–204

    Article  Google Scholar 

  32. Huang Y, Bird R, Heidrich O (2009b) Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J Clean Prod 17(2):283–296

    CAS  Article  Google Scholar 

  33. Huang Y, Spray A, Parry T (2013) Sensitivity analysis of methodological choices in road pavement LCA. Int J Life Cycle Assess 18(1):93–101

  34. INEI (2018) Longitud de la red vial, según sistema de carretera, 2005–2012. Peruvian Statistics Institute – INEI. Retrieved from: Latest access: October 11th 2018 (in Spanish)

  35. IPCC (2013) Climate Change 2013. The physical science basis. working group I contribution to the 5th assessment report of the IPCC. Intergovernamental Panel on Climate Change. Retrieved from: Accessed 30 June 2018

  36. ISO (2006a) ISO 14040. Environmental Management e Life Cycle Assessment – Principles and Framework. International Organization for Standardization

  37. ISO (2006b) ISO 14044. Environmental Management e Life Cycle Assessment – Requirements and Guidelines. International Organization for Standardization

  38. Kucukvar M, Noori M, Egilmez G, Tatari O (2014) Stochastic decision modeling for sustainable pavement designs. Int J Life Cycle Assess 19(6):1185–1199

    CAS  Article  Google Scholar 

  39. Kunieda M, Gauthier A (2007) Sustainable transport: a sourcebook for policy-makers in developing cities. GTZ, Division 44: Environment and Infrastructure. Retrieved from: Last accessed: November 1st 2017

  40. Larrea-Gallegos G, Vázquez-Rowe I, Gallice G (2017) Life cycle assessment of the construction of an unpaved road in an undisturbed tropical rainforest area in the vicinity of Manu National Park, Peru. Int J Life Cycle Assess 22(7):1109–1124

    Article  Google Scholar 

  41. Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669

    Article  Google Scholar 

  42. Laurance WF, Venter O, Gopalasamy RC, Sloan S, Edwards DP, Phalan B, Balmford A, O’Connell CS, van der Ree R, Burgués Arrea I, Mueller ND, Goosem M (2011) A global strategy for road building. Nature 513:229–232

    Article  Google Scholar 

  43. Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, van der Ree R, Arrea IB (2014) A global strategy for road building. Nature 513(7517):229–232

    CAS  Article  Google Scholar 

  44. Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46(7):4100–4108

    CAS  Article  Google Scholar 

  45. Le Maitre O, Süssner M, Zarak C (1998) Evaluation of tire wear performance (No. 980256). SAE Technical Paper

  46. Li J (2011) Decoupling urban transport from GHG emissions in Indian cities—a critical review and perspectives. Energ Policy 39(6):3503–3514

    CAS  Article  Google Scholar 

  47. Lima Cómo Vamos (2015) Cómo vamos en movilidad sexto informe. Informe de resultados sobre calidad de vida. Lima Cómo Vamos: Observatorio Ciudadano. Retrieved from: Last accessed: November 1st 2017 (in Spanish)

  48. Lin J, Yu D (2008) Traffic-related air quality assessment for open road tolling highway facility. J Environ Manag 88(4):962–969

    Article  Google Scholar 

  49. Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L et al (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14(13):1262–1263

    CAS  Article  Google Scholar 

  50. Milachowski C, Stengel T, Gehlen C (2011) Life cycle assessment for road construction and use. European Concrete Paving Association, Brussels. Retrieved from: Latest access: November 29th 2017

  51. MINAM (2014) Estrategia nacional para combustibles y vehículos más limpios y eficientes en el Perú. Retrieved from: Latest access: October 11th 2018

  52. MINAM (2015) Contribución prevista y determinada a nivel nacional (INDC) de la República del Perú. Ministerio del Ambiente, Peru Disponible en: Latest access: October 14th 2016 (in Spanish)

    Google Scholar 

  53. MINAM (2016a) Preguntas y Respuestas para entender el caso del Euro IV. Retrieved from: Latest access: November 20th 2017 (in Spanish)

  54. MINAM (2016b) Inventario Nacional de Gases de Efecto Invernadero. Ministerio del Ambiente, Peru Retrieved from: Latest access: November 1st 2017 (in Spanish)

    Google Scholar 

  55. MINAM (2016c) El Perú y el Cambio Climático. Tercera Comunicación Nacional del Perú a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Retrieved from: Latest access: October 31st 2017 (in Spanish)

  56. Mroueh UM, Eskola P, Laine-Ylijoki J, Wellman K, Mäkelä E, Juvankoski M, Ruotoistenmäki A (2000) Life Cycle Assessment of Road Construction. Finnish National Road Administration. Finnra Reports 17/2000

  57. MTC (2003) Ministerio de Transportes y Comunicaciones. Reglamento Nacional de Vehículos. Decreto Supremo N° 058-2003-MTC. Retrieved from: (in Spanish)

  58. MTC (2014) Ministerio de Transportes y Comunicaciones. Manual de carreteras. Diseño Geométrico. Retrieved from: Latest Access: January 22nd 2017 (in Spanish)

  59. MTC (2017a) Red Vial Nacional. Ministerio de Transportes y Comunicaciones. Retrieved from: Latest access: July 18th 2017 (in Spanish)

  60. MTC (2017b) Ministerio de Transportes y Comunicaciones. Aprueban Reglamento de protección Ambiental para el Sector Transportes. Retrieved from: Latest access: January 22nd 2017 (in Spanish)

  61. Onat NC, Kucukvar M, Tatari O (2015) Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl Energy 150:36–49

    Article  Google Scholar 

  62. Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23(1):28–39

    Article  Google Scholar 

  63. Pachón Á, Ramírez MT (2006) La infraestructura de transporte en Colombia durante el siglo XX. Fondo de Cultura Económica. ISBN: 9583801364

  64. Pan L, Yao E, Yang Y (2016) Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information. J Environ Manag 183:510–520

    CAS  Article  Google Scholar 

  65. Park K, Hwang Y, Seo S, Seo H (2003) Quantitative assessment of environmental impacts on life cycle of highways. J Constr Eng Manag 129(1):25–31

    Article  Google Scholar 

  66. Pérez-Peña MP, Henderson BH, Nedbor-Gross R, Pachón JE (2017) Natural mitigation factor adjustment for re-suspended particulate matter emissions inventory for Bogota, Colombia. Atmos Pollut Res 8(1):29–37

    Article  Google Scholar 

  67. Perú Cámaras (2017) Reporte Regional Centro. Retrieved from: Last accessed: October 11th 2018 (in Spanish)

  68. PRé-Product Ecology Consultants (2017) SimaPro 8.2.0. PRè Consultants, The Netherlands

    Google Scholar 

  69. Querini F, Benetto E (2015) Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies. Environ Sci Technol 49(3):1744–1751

    CAS  Article  Google Scholar 

  70. Santero N, Masanet E, Horvath A (2010) Life-Cycle Assessment of Pavements: A Critical. Review of Existing Literature and Research, SN3119a, Portland Cement Association, Skokie, Illinois, USA, 81 pp

  71. SENAMHI (2016) Ciclos horarios de precipitación en el Perú utilizando información satelital. Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). Retrieved from: Latest access: November 20th 2017 (in Spanish)

  72. Shindell D, Faluvegi G, Seltzer K, Shindell C (2018) Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat Clim Change 8:291–295

  73. Simons A (2016) Road transport: new life cycle inventories for fossil-fuelled passenger cars and non-exhaust emissions in ecoinvent v3. Int J Life Cycle Assess 21(9):1299–1313

    CAS  Article  Google Scholar 

  74. Speth RL, Chow EW, Malina R, Barrett SR, Heywood JB, Green WH (2014) Economic and environmental benefits of higher-octane gasoline. Environ Sci Technol 48(12):6561–6568

    CAS  Article  Google Scholar 

  75. Stripple H (2001) Life cycle assessment of road. A pilot study for inventory analysis, 2nd edn. Swedish Environmental Research Institute (IVL), Gothemburg

    Google Scholar 

  76. Suman D (2007) Globalization and the Pan-American highway: concerns for the Panama-Colombia border region of Darién-Chocó and its peoples. The University of Miami Inter-Am Law Rev 38(3):549–614

  77. Tang TQ, Huang HJ, Shang HY (2015) Influences of the driver’s bounded rationality on micro driving behavior, fuel consumption and emissions. Transp Res Part D: Transp Environ 41:423–432

    Article  Google Scholar 

  78. Tashiro Y, Taniyama T (2002) Atmospheric NO2 and CO concentration in Lima, Peru. Environ Int 28(4):227–233

    CAS  Article  Google Scholar 

  79. Trading Economics (2018) Roads paved in France in 2009. Trading Economics. Retrieved from: Accessed 15 Nov 2018

  80. Vázquez-Rowe I, Reyna JL, García-Torres S, Kahhat R (2015) Is climate change-centrism an optimal policy making strategy to set national electricity mixes? Appl Energy 159:108–116

    Article  Google Scholar 

  81. Vázquez-Rowe I, Kahhat R, Quispe I, Bentín M (2016) Environmental profile of green asparagus production in a hyper-arid zone in coastal Peru. J Clean Prod 112:2505–2517

    Article  Google Scholar 

  82. Wang Z, Lu M (2014) An empirical study of direct rebound effect for road freight transport in China. Appl Energy 133:274–281

    Article  Google Scholar 

  83. Weidema BP (1998) Multi-user test of the data quality matrix for product life cycle inventory data. Int J Life Cycle Assess 3(5):259–265

  84. Weidema BP, Thrane M, Christensen P, Schmidt J, Lokke S (2008) Carbon footprint- A catalyst for life cycle assessment? J Ind Ecol 12:3–6

    Article  Google Scholar 

  85. Yu B, Lu Q (2012) Life cycle assessment of pavement: methodology and case study. Transp Res Part D: Transp Environ 17(5):380–388

    CAS  Article  Google Scholar 

  86. Zhang P, Shao M (2014) Spatial variability and stocks of soil organic carbon in the Gobi Desert of northwestern China. PLoS One 9(4):e93584

    Article  Google Scholar 

  87. Zhou G, Ou X, Zhang X (2013) Development of electric vehicles use in China: a study from the perspective of life-cycle energy consumption and greenhouse gas emissions. Energ Policy 59:875–884

    Article  Google Scholar 

Download references


The authors wish to thank Rutas de Lima for providing valuable data for the elaboration of this article. B.Sc. Dr. Ramzy Kahhat and M.Sc. Félix Cabrera are acknowledged for valuable scientific exchange.


Financial support was given by the Peruvian Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC).

Author information



Corresponding author

Correspondence to Ian Vázquez-Rowe.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Omer Tatari

Electronic supplementary material


(XLSX 2941 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verán-Leigh, D., Larrea-Gallegos, G. & Vázquez-Rowe, I. Environmental impacts of a highly congested section of the Pan-American highway in Peru using life cycle assessment. Int J Life Cycle Assess 24, 1496–1514 (2019).

Download citation


  • Highway
  • Industrial ecology
  • Infrastructure
  • LCA
  • Peru
  • Road construction