Skip to main content

Advertisement

Log in

Harmonized rules for future LCAs on pharmaceutical products and processes

  • HEALTHCARE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The manufacturing of pharmaceuticals and their occurrence in the environment generated growing concerns of stakeholders. Life Cycle Assessment (LCA) is a suitable tool to identify potential environmental impacts within the whole pharmaceutical value chain. However, existing pharma-LCAs revealed several methodological shortcomings and challenges. To support the development of future LCAs in the sector, draft Product Category Rules (PCR) for pharmaceuticals for human use and their manufacturing processes are proposed.

Methods

Existing LCA case studies were evaluated and compared based on the methodological requirements according to the ISO 14044 standard. In addition, PCRs from the pharmaceutical sector, generic LCA standards, and product-specific guidelines were reviewed. Subsequently, overlaps between and deviations from these sources were identified. It was determined whether methodological requirements can be adopted from existing standards and guidelines or whether additional rules or specifications for pharmaceutical products are needed.

Results and discussion

The overall PCR structure was established in alignment with ISO 14044, ISO TS 14027, and the Guidance for PCR development (GPCRD). For the definition of product groups, the third level of the Anatomic Therapeutic Chemical (ATC) classification system was determined as appropriate level of detail (granularity). The methodological requirements, e.g., the definition of goal and scope, inventory analysis, as well as the impact assessment, were set considering the intended application and the product system. However, the majority of these proposed methodological requirements go beyond current practice in existing pharma-LCAs (e.g., definition of an effect-based functional unit). Moreover, the need for specific rules depending on the active pharmaceutical ingredient (API), the galenic formulation, and regional aspects was described and discussed.

Conclusions

This work tackles current methodological challenges of LCA application in the pharmaceutical sector by providing harmonized rules to guide future studies on pharmaceutical products and processes. However, modelling the use- and end of life phase as well as considering pharma-specific impacts were revealed as remaining challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK's reagent guides—embedding sustainability into reagent selection. Green Chem 15(6):1542

    Article  CAS  Google Scholar 

  • Amado A, Patricia L, Alvarez AJ (2017) Comparative life cycle assessment of the use of an ionic liquid ([Bmim]Br) versus a volatile organic solvent in the production of acetylsalicylic acid. J Clean Prod 168:1614–1624

    Article  CAS  Google Scholar 

  • Arnold KE, Brown AR, Ankley GT, Sumpter JP (2014) Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems. Phil Trans R Soc B 369:20130569. https://doi.org/10.1098/rstb.2013.0569

    Article  Google Scholar 

  • Banimostafa A, Papadokonstantakis S, Hungerbühler K (2015) Retrofit design of a pharmaceutical batch process considering “green chemistry and engineering” principles. AICHE J 61(10):3423–3440

    Article  CAS  Google Scholar 

  • Belboom S, Renzoni R, Verjans B, Léonard A, Germain A (2011) A life cycle assessment of injectable drug primary packaging. Comparing the traditional process in glass vials with the closed vial technology (polymer vials). Int J Life Cycle Assess 16(2):159–167

    Article  CAS  Google Scholar 

  • BPI (n.d.) Revenue of the worldwide pharmaceutical market from 2001 to 2015 (in billion U.S. dollars). Available online at https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/., checked on 8 August, 2017

  • Bruggink A, Nossin P (2006) Assessment of bio-based pharmaceuticals: the cephalexin case. In: Renewables based technology: sustainability assessment, 1st edn. Wiley, Chichester, pp 315–329

  • Brunet R, Guillén-Gosálbez G, Jiménez L (2014) Combined simulation–optimization methodology to reduce the environmental impact of pharmaceutical processes. Application to the production of Penicillin V. J Clean Prod 76:55–63

    Article  CAS  Google Scholar 

  • Bryan MC, Dillon B, Hamann LG, Hughes GJ, Kopach ME, Peterson EA, Pourashraf M, Raheem I, Richardson P, Richter D, Sneddon HF (2013) Sustainable practices in medicinal chemistry: current state and future directions. J Med Chem 56(15):6007–6021

    Article  CAS  Google Scholar 

  • Bunnak P, Allmendinger R, Ramasamy SV, Lettieri P, Titchener-Hooker NJ (2016) Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs. Biotechnol Prog 32(5):1324–1335. https://doi.org/10.1002/btpr.2323

    Article  CAS  Google Scholar 

  • Celle-Jeanton H, Schemberg D, Mohammed N, Huneau F, Bertrand G, Lavastre V, Le Coustumer P (2014) Evaluation of pharmaceuticals in surface water: reliability of PECs compared to MECs. Environ Int 73:10–21

    Article  CAS  Google Scholar 

  • Cespi, Beach ES, Swarr TE, Passarini F, Vassura I, Dunn PJ, Anastas PT (2015) Life cycle inventory improvement in the pharmaceutical sector. Assessment of the sustainability combining PMI and LCA tools. Green Chem 17(6):3390–3400

    Article  CAS  Google Scholar 

  • Christen V, Hickmann S, Rechenberg B, Fent K (2010) Highly active human pharmaceuticals in aquatic systems: a concept for their identification based on their mode of action. Aquat Toxicol 96(3):167–181

    Article  CAS  Google Scholar 

  • Ciriminna R, Pagliaro M (2013) Green chemistry in the fine chemicals and pharmaceutical industries. Org Process Res Dev 17(12):1479–1484

    Article  CAS  Google Scholar 

  • Cook SM, VanDuinen BJ, Love NG, Skerlos SJ (2012) Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ Sci Technol 46(10):5535–5541

    Article  CAS  Google Scholar 

  • Curzons AD, Jiménez-González C, Duncan AL, Constable DJC, Cunningham VL (2007) Fast life cycle assessment of synthetic chemistry (FLASC™) tool. Int J Life Cycle Assess 12(4):272–280

    Article  CAS  Google Scholar 

  • De Jonge AM (2003) Limited LCAs of pharmaceutical products. Merits and limitations of an environmental management tool. Corp Soc Responsib Environ Mgmt 10(2):78–90

    Article  Google Scholar 

  • De Soete W, Dewulf J, Cappuyns P, Van der Vorst G, Heirman B, Aelterman W et al (2013) Exergetic sustainability assessment of batch versus continuous wet granulation based pharmaceutical tablet manufacturing. A cohesive analysis at three different levels. Green Chem 15(11):3039

    Article  CAS  Google Scholar 

  • De Soete W, Boone L, Willemse F, De Meyer E, Heirman B, Van Langenhove H, Dewulf J (2014a) Environmental resource footprinting of drug manufacturing. Effects of scale-up and tablet dosage. Resour Conserv Recycl 91:82–88

    Article  Google Scholar 

  • De Soete W, Debaveye S, De Meester S, Van der Vorst G, Aelterman W, Heirman B et al (2014b) Environmental sustainability assessments of pharmaceuticals. An emerging need for simplification in life cycle assessments. Environ Sci Technol 48(20):12247–12255

    Article  CAS  Google Scholar 

  • De Soete W, Jiménez-González C, Dahlin P, Dewulf J (2017) Challenges and recommendations for environmental sustainability assessments of pharmaceutical products in the healthcare sector. Green Chem 19(15):3493–3509

    Article  Google Scholar 

  • DIMDI (2018) Databases A-Z. Available online at https://www.dimdi.de/dynamic/en/db/dbinfo/index.htm, checked on 22 February, 2018

  • DrugBank (2018) Drugs. Available online at https://www.drugbank.ca/, checked on 22 February, 2018

  • Du B, Haddad SP, Luek A, Scott WC, Saari GN, Burket SR et al (2016) Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou. Environ Toxicol Chem 35(4):966–974

    Article  CAS  Google Scholar 

  • EEA (2010) Pharmaceuticals in the environment. Results of an EEA workshop. Publications Office, Luxembourg (Technical report (European Environment Agency. Online), 1/2010)

    Google Scholar 

  • Emara Y, Lehmann A, Siegert M-W, Finkbeiner M (2018) Modelling pharmaceutical emissions and their toxicityrelated impacts in life cycle assessment (LCA)—a review. Integr Environ Assess Manag (IEAM) (accepted manuscript). https://doi.org/10.1002/ieam.4100

  • Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS (2011) Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res 45(1):75–92

    Article  CAS  Google Scholar 

  • European Commission (2017) PEFCR Guidance document—guidance for the development of Product Environmental Footprint Category Rules (PEFCRs) during the Environmental Footprint (EF) pilot phase - Version 6.1; European Commission: Brussels, 2017

  • European Union (2001) Directive 2001/83/EC of the European Parliament and the Council of 6 November 2001 on the Community code relating to medicinal products for human use. Available online at http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=uriserv:OJ.L_.2001.311.01.0067.01.DEU, checked on 11 October, 2017

  • European Union (2010) International Reference Life Cycle Data System (ILCD) handbook - Framework and requirements for life cycle impact assessment models and indicators. 1st edition. EUR 24586 EN. European Commission. Joint Research Centre. Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg. https://doi.org/10.2788/38719

  • Finkbeiner M (2014) Product environmental footprint—breakthrough or breakdown for policy implementation of life cycle assessment? Int J Life Cycle Assess 19(2):266–271

    Article  CAS  Google Scholar 

  • Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel H-J (2006) The new international standards for life cycle assessment. ISO 14040 and ISO 14044. Int J Life Cycle Assess 11(2):80–85

    Article  Google Scholar 

  • Ford AT, Fong PP (2016) The effects of antidepressants appear to be rapid and at environmentally relevant concentrations. Environ Toxicol Chem 35(4):794–798

    Article  CAS  Google Scholar 

  • Gamarra JS, Godoi AFL, de Vasconcelos EC, de Souza KMT, de Oliveira CMR (2015) Environmental Risk Assessment (ERA) of diclofenac and ibuprofen: a public health perspective. Chemosphere 120:462–469

    Article  CAS  Google Scholar 

  • GHG (2011) Product life cycle accounting and reporting standard. Greenhouse gas protocol. World Resources Institute; World Business Council for Sustainable Development, Washington, DC, Geneva, Switzerland

    Google Scholar 

  • Gilroy EAM, Klinck JS, Campbell SD, McInnis R, Gillis PL, de Shane R (2014) Toxicity and bioconcentration of the pharmaceuticals moxifloxacin, rosuvastatin, and drospirenone to the unionid mussel Lampsilis siliquoidea. Sci Total Environ 487:537–544

    Article  CAS  Google Scholar 

  • GPCRD (2013) Guidance for product category rule development - Version 1.0. PCR Guidance Development Initiative. European Commission - Joint Research Center. http://publications.jrc.ec.europa.eu/repository/handle/JRC82098. Accessed 07 Nov 2018

  • Guinée JB (1995) Development of a methodology for the environmental life-cycle assessment of products: with a case study on margarines. Doctoral Thesis. Available online at https://openaccess.leidenuniv.nl/handle/1887/8052, checked on 25 April, 2018

  • Henderson RK, Jiménez-González C, Preston C, Constable DJC, Woodley JM (2008) EHS & LCA assessment for 7-ACA synthesis. A case study for comparing biocatalytic & chemical synthesis. Ind Biotechnol 4(2):180–192

    Article  CAS  Google Scholar 

  • Henderson AD, Hauschild MZ, Van de Meent D, MAJ H, Larsen HF, Margni M et al (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis. Sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):701–709

    Article  CAS  Google Scholar 

  • IES (2014) Product Category Rules UN CPC 35270 Vaccines for Human or Veterinary Medicine, whether or not put up as medicaments. The International EPD® System. Available online at https://www.environdec.com/PCR/Detail/?Pcr=7848, checked on 25 April, 2018

  • IES (2015) PCR Basic Module UN CPC 35 Other Chemical products; man-made fibres. The International EPD® System. Available online at https://www.environdec.com/PCR/Detail/?Pcr=7066, checked on 25 April, 2018

  • IES (2017) General Programme Instructions for the International EPD® System (Version 3.0). Available online at https://www.environdec.com/contentassets/95ee9211a9614f1faa7461ff32cecc91/general-programme-instructions-v3.0.pdf, checked on 25 April, 2018

  • Ingwersen WW, Subramanian V (2014) Guidance for product category rule development. Process, outcome, and next steps. Int J Life Cycle Assess 19(3):532–537

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013. The physical science basis: Working Group I contribution to the Fifth assessment report. Intergovernmental Panel on Climate Change. http://www.ipcc.ch/report/ar5/wg1/. Accessed 25 Apr 2018

  • Isidori M, Nardelli A, Parrella A, Pascarella L, Previtera L (2006) A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: furosemide and its photoproduct. Chemosphere 63(5):785–793

    Article  CAS  Google Scholar 

  • ISO (2006a) Environmental labels and declarations—type III environmental declarations—principles and procedures (ISO 14025:2006). International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2006b) Environmental management—life cycle assessment—principles and framework (ISO 14040:2006). International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2006c) Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen (ISO 14044:2006). International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2017) Environmental labels and declarations—development of product category rules (ISO/TS 14027:2017 (E)). International Organization for Standardization, Geneva

    Google Scholar 

  • Jiménez-González C (2000) Life cycle assessment in pharmaceutical applications. Dissertation, North Carolina University. Available online at https://repository.lib.ncsu.edu/bitstream/handle/1840.16/5635/etd.pdf?sequence=1&isAllowed=y, checked on 4/25/2018

  • Jiménez-González C, Overcash MR (2014) The evolution of life cycle assessment in pharmaceutical and chemical applications—a perspective. Green Chem 16(7):3392–3400

    Article  Google Scholar 

  • Jiménez-González C, Curzons Alan D, Constable DJC, Cunningham VL (2004) Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. Int J Life Cycle Assess 9(2):114–121

    Article  Google Scholar 

  • Jimenez-Gonzalez C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick. Why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15(4):912–917

    Article  CAS  Google Scholar 

  • Jiménez-González C, Ollech C, Pyrz W, Hughes D, Broxterman QB, Neil B (2013) Expanding the boundaries. Developing a streamlined tool for eco-footprinting of pharmaceuticals. Org Process Res Dev 17(2):239–246

    Article  CAS  Google Scholar 

  • Jödicke G, Zenklusen O, Weidenhaupt A, Hungerbühler K (1999) Developing environmentally-sound processes in the chemical industry: a case study on pharmaceutical intermediates. J Clean Prod 7(2):159–166

    Article  Google Scholar 

  • Kim S, Jiménez-González C, Dale BE (2009) Enzymes for pharmaceutical applications—a cradle-to-gate life cycle assessment. Int J Life Cycle Assess 14(5):392–400

    Article  CAS  Google Scholar 

  • Klatte S, Schaefer H-C, Hempel M (2016) Pharmaceuticals in the environment—a short review on options to minimize the exposure of humans, animals and ecosystems. Sust Chem Pharm 5:61–66

    Google Scholar 

  • Kralisch D, Ott D, Gericke D (2015) Rules and benefits of life cycle assessment in green chemical process and synthesis design. A tutorial review. Green Chem 17(1):123–145

    Article  CAS  Google Scholar 

  • Kümmerer K (2007) Sustainable from the very beginning. Rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem 9(8):899

    Article  CAS  Google Scholar 

  • Kümmerer K (ed) (2008) Pharmaceuticals in the environment—sources, fate, effects and risks; with 62 tables, 3rd edn. Springer, Berlin Available online at http://sub-hh.ciando.com/book/?bok_id=330023

    Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90(8):2354–2366

    Article  CAS  Google Scholar 

  • Kümmerer K, Hempel M (eds) (2010) Green and sustainable pharmacy. Springer, Berlin

    Google Scholar 

  • Larsson DGJ (2014) Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc Lond B 369(1656):20130571. https://doi.org/10.1098/rstb.2013.0571

    Article  CAS  Google Scholar 

  • Lee CK, Khoo HH, Tan RBH (2016) Life cycle assessment based environmental performance comparison of batch and continuous processing. A case of 4-d-erythronolactone synthesis. Org Process Res Dev 20(11):p1937–p1948. https://doi.org/10.1021/acs.oprd.6b00275

    Article  CAS  Google Scholar 

  • Lehmann A, Bach V, Finkbeiner M (2016) EU product environmental footprint—mid-term review of the pilot phase. Sustainability 8(1):92

    Article  Google Scholar 

  • Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201

    Article  CAS  Google Scholar 

  • Llano G (2012) Environmental impact of the pharmaceutical packaging. Master Thesis. Lund University ISRN LUTMDN/TMFL–12/5099–SE. Available online at http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3044827&fileOId=3044828, checked on 25 April, 2018

  • Mata TM, Martins AA, Neto B, Martins ML, Salcedo RLR, Costa CAV (2012) LCA tool for sustainability evaluations in the pharmaceutical industry. Chem Eng Trans. https://doi.org/10.3303/CET1226044

  • McAlister S, Ou Y, Neff E, Hapgood K, Story D, Mealey P, McGain F (2016) The environmental footprint of morphine: a life cycle assessment from opium poppy farming to the packaged drug. BMJ Open 6(10):e013302

    Article  Google Scholar 

  • McElroy CR, Constantinou A, Jones LC, S L, Clark JH (2015) Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem 17(5):3111–3121

    Article  CAS  Google Scholar 

  • Minkov N, Schneider L, Lehmann A, Finkbeiner M (2015) Type III Environmental Declaration Programmes and harmonization of product category rules. Status quo and practical challenges. J Clean Prod 94:235–246

    Article  Google Scholar 

  • NHS (2012) Greenhouse gas accounting sector guidance for pharmaceutical products and medical devices. National Health Service (NHS). http://www.ghgprotocol.org/sites/default/files/ghgp/Summary-Document_Pharmaceutical-Product-and-Medical-Device-GHG-Accounting_November-2012_0.pdf. Accessed 25 Apr 2018

  • NHS (2015) Care pathways: guidance on appraising sustainability. National Health Service Main Document. National Health Service (NHS). https://www.sduhealth.org.uk/areas-of-focus/carbonhotspots/pharmaceuticals/cspm/sustainable-care-pathways-guidance.aspx. Accessed 25 Apr 2018

  • Nielsen PH, Oxenbøll KM, Wenzel H (2007) Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by novozymes A/S. Int J Life Cycle Assess 12(6):432–438

    Article  CAS  Google Scholar 

  • Ortiz de García S, Pinto PG, Encina PG, Mata RI (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465

    Article  CAS  Google Scholar 

  • Ott D, Kralisch D, Denčić I, Hessel V, Laribi Y, Perrichon PD, Berguerand C, Kiwi-Minsker L, Loeb P (2014) Life cycle analysis within pharmaceutical process optimization and intensification: case study of active pharmaceutical ingredient production. Chem Sus Chem 7(12):3521–3533

    Article  CAS  Google Scholar 

  • Ott D, Borukhova S, Hessel V (2016) Life cycle assessment of multi-step rufinamide synthesis—from isolated reactions in batch to continuous microreactor networks. Green Chem 18(4):1096–1116

    Article  CAS  Google Scholar 

  • Pfizer (2012) Environmental product declaration for Improvac. The International EPD® System, Stockholm

    Google Scholar 

  • Pietrzykowski M, Flanagan W, Pizzi V, Brown A, Sinclair A, Monge M (2013) An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies. J Clean Prod 41:150–162

    Article  CAS  Google Scholar 

  • Poechlauer P, Braune S, De Vries A, May O (2010) Sustainable route design for pharmaceuticals. Why, how and when. Chim Oggi 28(4):14–17

    CAS  Google Scholar 

  • Ponder C, Overcash M (2010) Cradle-to-gate life cycle inventory of vancomycin hydrochloride. Sci Total Environ 408(6):1331–1337

    Article  CAS  Google Scholar 

  • Raju G, Sarkar P, Singla E, Singh H, Sharma RK (2016a) Comparison of environmental sustainability of pharmaceutical packaging. Perspect Sci 8:683–685

    Article  Google Scholar 

  • Raju G, Singh H, Sarkar P, Singla E (2016b) A framework for evaluation of environmental sustainability in pharmaceutical industry. In: Mandal DK, Syan CS (eds) CAD/CAM, robotics and factories of the future. Springer, New Delhi, pp 797–806. https://doi.org/10.1007/978-81-322-2740-3_77

    Chapter  Google Scholar 

  • Ramasamy SV, Titchener-Hooker NJ, Lettieri P (2015) Life cycle assessment as a tool to support decision making in the biopharmaceutical industry. Considerations and challenges. Food Bioprod Process 94:297–305

    Article  Google Scholar 

  • Raymond MJ, Slater CS, Savelski MJ (2010) LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chem 12(10):1826

    Article  CAS  Google Scholar 

  • Rehman MSU, Rashid N, Ashfaq M, Saif A, Nasir A, Han J-I (2015) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055

    Article  CAS  Google Scholar 

  • Roig B, D’Aco V (2015) Distribution of pharmaceutical residues in the environment. In: Hester RE, Harrison RM (eds) Pharmaceuticals in the environment. Royal Society of Chemistry (Issues in Environmental Science and Technology), Cambridge, pp 34–69

    Chapter  Google Scholar 

  • Roschangar F, Sheldon RA, Senanayake CH (2015) Overcoming barriers to green chemistry in the pharmaceutical industry—the Green Aspiration Level™ concept. Green Chem 17(2):752–768

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model. Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Huijbregts MAJ, Henderson AD, Margni M, McKone TE, Van de Meent D et al (2011) USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis. Sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):710–727

    Article  CAS  Google Scholar 

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis. State of the art. Green Chem 7(5):267

    Article  CAS  Google Scholar 

  • Sherman J, Le C, Lamers V, Eckelman M (2012) Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg 114(5):1086–1090

    Article  CAS  Google Scholar 

  • Slater CS, Savelski MJ (2009) Towards a greener manufacturing environment. Innov Pharma Technol 29:78–83

    Google Scholar 

  • Straub JO (2016) Reduction in the environmental exposure of pharmaceuticals through diagnostics, personalised healthcare and other approaches. A mini review and discussion paper. Sust Chem Pharma 3:1–7

    CAS  Google Scholar 

  • Taylor D (2015) The pharmaceutical industry and the future of drug development. In: Hester RE, Harrison RM (eds) Pharmaceuticals in the environment. Royal Society of Chemistry (Issues in Environmental Science and Technology), Cambridge, pp 1–33

    Google Scholar 

  • Tufvesson LM, Tufvesson P, Woodley JM, Börjesson P (2013) Life cycle assessment in green chemistry. Overview of key parameters and methodological concerns. Int J Life Cycle Assess 18(2):431–444

    Article  CAS  Google Scholar 

  • United Nations (2015) Central Product Classification (CPC), Series M No. 77, Version 2.1. Department of Economic and Social Affairs-Statistic Division. United Nations. https://unstats.un.org/unsd/cr/downloads/CPCv2.1_complete%28PDF%29_English.pdf. Accessed 25 Apr 2018

  • Van der Vorst G, Van Langenhove H, De Paep F, Aelterman W, Dingenen J, Dewulf J (2009) Exergetic life cycle analysis for the selection of chromatographic separation processes in the pharmaceutical industry. Preparative HPLC versus preparative SFC. Green Chem 11(7):1007

    Article  CAS  Google Scholar 

  • Van der Vorst G, Dewulf J, Aelterman W, De Witte B, Van Langenhove H (2011) A systematic evaluation of the resource consumption of active pharmaceutical ingredient production at three different levels. Environ Sci Technol 45(7):3040–3046. https://doi.org/10.1021/es1015907

    Article  CAS  Google Scholar 

  • Van der Vorst G, Aelterman W, De Witte B, Van Heirman B, Langenhove H, Dewulf J (2013) Reduced resource consumption through three generations of Galantamine·HBr synthesis. Green Chem 15(3):744

    Article  CAS  Google Scholar 

  • Van Oers L, De Koning A, Guinée JB, Huppes G (2002) Abiotic resource depletion in LCA. Improving characterisation factors for abiotic resource depletion as recommended in the new Dutch LCA handbook. Available online at https://www.leidenuniv.nl/cml/ssp/projects/lca2/report_abiotic_depletion_web.pdf. checked on 25 Apr 2018

  • Van Zelm R, Huijbregts Mark AJ, Van de Meent D (2009) USES-LCA 2.0—a global nested multi-media fate, exposure, and effects model. Int J Life Cycle Assess 14(3):282–284

    Article  Google Scholar 

  • Watanabe H, Tamura I, Abe R, Takanobu H, Nakamura A, Suzuki T, Hirose A, Nishimura T, Tatarazako N (2016) Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). Environ Toxicol Chem 35(4):996–1006

    Article  CAS  Google Scholar 

  • WBCSD (2014) Life cycle metrics for chemical products—a guideline by the chemical sector to assess and report on the environmental footprint of products, based on life cycle assessment. World Business Council for Sustainable Development. https://www.wbcsd.org/Projects/Chemicals/Resources/Life-Cycle-Metrics-for-Chemical-Products. Accessed 25 Apr 2018

  • Weber F-A, der Beek T, Carius A, Grüttner G, Hickmann S, Ebert I et al (2014) Pharmaceuticals in the environment—the global perspective. Occurrence, effects, and potential cooperative action under SAICM. German Environment Agency. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/pharmaceuticals_in_the_environment_0.pdf. Accessed 25 Apr 2018

  • Wernet G, Conradt S, Isenring HP, Jiménez-González C, Hungerbühler K (2010) Life cycle assessment of fine chemical production. A case study of pharmaceutical synthesis. Int J Life Cycle Assess 15(3):294–303

    Article  CAS  Google Scholar 

  • WHO (2012) Pharmaceuticals in drinking-water. World Health Organization. http://apps.who.int/iris/bitstream/handle/10665/44630/9789241502085_eng.pdf;jsessionid=B0323674E90485A0A737F97EB0C9B26F?sequence=1. Accessed 25 Apr 2018

  • WHO (2017) Guidelines for ATC classification and DDD assignment (2018). World Health Organization. Collaborating Centre for Drug Statistics Methodology. https://www.whocc.no/filearchive/publications/guidelines.pdf. Accessed 25 Apr 2018

  • Williams M, Backhaus T, Bowe C, Choi K, Connors K, Hickmann S, Hunter W, Kookana R, Marfil-Vega R, Verslycke T (2016) Pharmaceuticals in the environment: an introduction to the ET&C special issue. Environ Toxicol Chem 35(4):763–766

    Article  CAS  Google Scholar 

  • Winker M, Faika D, Gulyas H, Otterpohl R (2008) A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellowwater. Sci Total Environ 399(1–3):96–104

    Article  CAS  Google Scholar 

  • Yaseneva P, Hodgson P, Zakrzewski J, Falß S, Meadows RE, Lapkin AA (2016) Continuous flow Buchwald–Hartwig amination of a pharmaceutical intermediate. React Chem Eng 1(2):229–238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is part of a project within the initiative for sustainable pharmacy, funded by the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU). We gratefully acknowledge the engagement of the accompanying group of experts as well as the provided financial support by the DBU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-William Siegert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Melissa Bilec

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegert, MW., Lehmann, A., Emara, Y. et al. Harmonized rules for future LCAs on pharmaceutical products and processes. Int J Life Cycle Assess 24, 1040–1057 (2019). https://doi.org/10.1007/s11367-018-1549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1549-2

Keywords

Navigation