Skip to main content

Advertisement

Log in

Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil

  • LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The use of bagasse and trash from sugarcane fields in ethanol production is supposed to increase the ethanol yield per hectare, to reduce the energy demand, greenhouse gas emissions, and other environmental impacts. In this article, different technological options of ethanol production are investigated and quantified looking at potential environmental impacts. The first-generation ethanol from sugarcane is compared to stand-alone second-generation ethanol as well as an integrated first- and second-generation ethanol production.

Methods

The method applied for this life cycle assessment follows the ISO standards 14040/44. The data used in this life cycle assessment is mainly derived from process simulation, literature, and primary data collection. Background data was taken from databases such as GaBi and ecoinvent. The life cycle impact assessment follows the default methods at midpoint level recommended by the International Reference Life Cycle Data System. The calculations were performed using the GaBi 7 life cycle assessment software. It is assumed that 50% of sugarcane trash is recovered and used for second-generation ethanol production, whereas the other 50% remain in the field to maintain soil fertility and to prevent soil erosion. In the case of first-generation ethanol, the same amount of trash is used for energy generation.

Results and discussion

The results of the life cycle impact assessment show that, compared to first-generation ethanol, second-generation ethanol from sugarcane in Brazil allows significant reductions in all investigated impact categories except resource depletion. Resource depletion, however, is strongly influenced by the demand for ammonium phosphate which is needed for inoculum preparation. Integrated first- and second-generation ethanol production also allows reductions in most of the environmental impacts except for global warming, photochemical ozone depletion, and resource depletion. The yield of ethanol per hectare increases since bagasse and trash are used for the production of second-generation ethanol. Consequently, the results show that agricultural land occupation is reduced for integrated first- and second-generation ethanol by approximately 11%, whereas second-generation ethanol allows reduction of land use by approximately a factor of 30.

Conclusions

The use of bagasse and trash for ethanol production allows both the reduction of several environmental impacts and land use, in particular, because impacts caused by sugarcane cultivation are avoided. For the integrated first- and second-generation ethanol scenario, it is important to further reduce the total energy demand in order to achieve self-sufficiency for the plant energy and to avoid additional emissions from burning fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aul E, Cordova R (1993) AP-42: compilation of air emission factors, chapter 1: external combustion sources. Emission factor documentation for AP-42 section, 1.8 bagasse combustion in sugar mills

  • Barta Z, Kovacs K, Reczey K, Zacchi G (2010) Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. J Enzym Res 2010(1–3):1–8

    Google Scholar 

  • Basso LC, Basso TO, Nitsche Rocha S (2011) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Dos Santos B, Aurelio M (eds) Biofuel production-recent developments and prospects. InTech

  • Braunbeck OA, Magalhães PSG (2010) Avaliação tecnológica da mecanização da cana-de-açúcar. In: Cortez LAB (ed) Bioetanol de cana-de-açúcar. P&D para produtividade e sustentabilidade, Blucher, São Paulo, pp 451–475

    Google Scholar 

  • Cardoso TDF, Chagas MF, de Morais ER, Carvalho JLN, Franco HCJ, Galdos MV, Scarpare FV, Braunbeck OA, Cortez LAB, Bonomi A (2013) Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. Sci Agric (Piracicaba, Braz) 70(5):353–360

    Article  Google Scholar 

  • Cavalett O, Chagas MF, Cardoso TDF, Franco HCJ, Junqueira TL, Pavanello LG, Jesus CDF, Moraes BS, Bonomi A (2013) Development of an agricultural model for biorefineries sustainability optimization. In: 21st European Biomass Conference. Setting the course for a biobased economy. Proceedings of the International Conference held in Copenhagen, Denmark. ETA-Florence Renewable Energies, Florence, pp 1826–1834

  • Cavalett O, Chagas MF, Junqueira TL, Watanabe MDB, Bonomi A (2017) Environmental impacts of technology learning curve for cellulosic ethanol in Brazil. Ind Crop Prod 106:31–39

    Article  Google Scholar 

  • Cavalett O, Chagas MF, Magalhães PSG, Carvalho JLN, Cardoso TDF, Franco HJ, Braunbeck OA, Bonomi A (2016) The agricultural production model. In: Bonomi A, Cavalett O, Pereira da Cunha M, Lima MAP (eds) Virtual biorefinery. Springer International Publishing, Cham, pp 13–52

    Chapter  Google Scholar 

  • Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2012) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658. https://doi.org/10.1007/s11367-012-0465-0

    Article  CAS  Google Scholar 

  • Centro de Tecnologia Copersucar (1987) Apostila do curso de Engenharia açucareira: Processo de Fabricação de Açúcar. Parte I, Piracicaba

  • Chagas MF, Bordonal RO, Cavalett O, Carvalho JLN, Bonomi A, La Scala N (2016) Environmental and economic impacts of different sugarcane production systems in the ethanol biorefinery. Biofuels Bioprod Biorefin 10(1):89–106

    Article  CAS  Google Scholar 

  • Chagas MF, Rosa Erguy N, Toshio Sugawara E (2012) Sugarcane life cycle inventory, Campinas, Brazil

  • Chandel AK, da Silva SS, Junqueira TL, Morais ER, Gouveia VLR, Cavalett O, Rivera EC, Geraldo VC, Bonomi A (2014) Chapter 1: Techno-economic analysis of second-generation ethanol in Brazil: competitive, complementary aspects with first-generation ethanol. In: da Silva SS, Chandel AK (eds) Biofuels in Brazil. Springer International Publishing, Cham

    Google Scholar 

  • Cunha MP, Chagas MF, Junqueira TL, Dias MOS, Pavanello LG, Leal MRLV, Rossell CEV, Bonomi A (2013) An exploratory economic analysis of sugarcane harvest extension using sweet sorghum in the Brazilian sugarcane industry. In: Hogarth DM (ed) International Society of Sugar Cane Technologists. Proceedings of the XXVIIIth Congress. Scribe Consulting, Brisbane, pp 1411–1415

  • Dasari RK, Dunaway K, Berson RE (2009) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuel 23(1):492–497

    Article  CAS  Google Scholar 

  • de Camargo CA, Ushima AH (1990) Conservação de energia na indústria do açúcar e do álcool. In: Manual de recomendações. Instituto de Pesquisas Tecnológicas, São Paulo

    Google Scholar 

  • de Souza Paraiso ML, Gouveia N (2015) Health risks due to pre-harvesting sugarcane burning in São Paulo State, Brazil. Rev Bras Epidemiol 18(3):691–701

    Article  Google Scholar 

  • Dias MOS (2008) Simulation of ethanol production processes from sugar and sugarcane bagasse, aiming process integration and maximization of energy and bagasse surplus [Simulação do processo de produção de etanol a partir do açúcar e do bagaço, visando à integração do processo e a maximização da produção de energia e excedentes do bagaço] (in Portuguese). MSc Dissertation (Chemical Engineering), University of Campinas

  • Dias MOS, Cunha MP, Jesus CDF, Scandiffio MIG, Rossell CEV, Filho RM, Bonomi A (2010) Simulation of ethanol production from sugarcane in Brazil: economic study of an autonomous distillery. In: Pierucci S, Buzzi Ferraris G (ed) Computer aided chemical engineering: 20th European Symposium on Computer Aided Process Engineering, vol 28. Elsevier, pp 733–738

  • Dias MOS, Junqueira TL, Cunha MP, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161

    Article  CAS  Google Scholar 

  • Du C, Kulay L, Cavalett O, Dias L, Freire F (2018) Life cycle assessment addressing health effects of particulate matter of mechanical versus manual sugarcane harvesting in Brazil. Int J Life Cycle Assess 23(4):787–799

    Article  CAS  Google Scholar 

  • EU (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

  • Food and Agriculture Organization FAO (2016) FAOSTAT. Sugar cane production

  • Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database. Overview and methodological framework (7 pp). Int J Life Cycle Assess 10(1):3–9

    Article  CAS  Google Scholar 

  • Gírio F, Fonseca C (2015) Final report summary - PROETHANOL2G (integration of biology and engineering into an economical and energy-efficient 2G bioethanol biorefinery). EU-Brazil Collaborative project funded by the EU Commission EU: (FP7-ENERGY-2009-BRAZIL, Contract No 251151) and Brazilian government (BRAZIL: Edital n° 006/2009 - CNPq/MCT). http://cordis.europa.eu/result/rcn/169193_en.html. Accessed 11 May 2017

  • Gírio F, Marques S, Pinto F, Oliveira AC, Costa P, Reis A, Moura P (2017) Biorefineries in the world. In: Rabaçal M, Ferreira AF, Silva CAM, Costa M (eds) Biorefineries: targeting energy, high value products and waste valorisation. Springer International Publishing, Cham, pp 227–281

    Chapter  Google Scholar 

  • Gírio F, Sebastião D, Fonseca C, Marques S, Maga D, Hiebel M (2015) 2G bioethanol biorefinery using sugarcane lignocellulosic biomass residues. In: Berg A, Parra C, Castro E, Gírio F, Rodríguez J, Villar JC, Area MC, Peresin MS, Navia R (eds) Biorefineries. Science, technology and innovation for the bioeconomy, pp 34–35

  • Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels. Energy and greenhouse gas balances. Bioresour Technol 100(21):4919–4930

    Article  CAS  Google Scholar 

  • Gnansounou E, Vaskan P, Pachon ER (2015) Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresour Technol 196:364–375

    Article  CAS  Google Scholar 

  • Hauschild MZ, Huijbregts MAJ (2015) Life cycle impact assessment. Springer, Dordrecht

    Book  Google Scholar 

  • Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dugdeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover NREL Report TP5100–47764

  • IPCC (2006) Guidelines for national greenhouse gas inventories, Vol. 4 – agriculture, forestry and other land use

  • ISO (2006) Environmental management - life cycle assessment - requirements and guidelines (ISO 14044)

  • JRC (2011) ILCD Handbook: Recommendations for life cycle impact assessment in the European context - based on existing environmental impact assessment models and factors, Luxembourg

  • Kartha S, Larson ED (2000) Bioenergy primer. Modernised biomass energy for sustainable development. UNDP, New York

    Google Scholar 

  • Larsen J (2013) Inbicon, a flexible cellulosic ethanol process. 3rd International Conference in Lignocellulosic Ethanol, Madrid

  • Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46:36–45

    Article  CAS  Google Scholar 

  • Leal MRLV (2010) Evolução tecnológica do processamento da cana-de-açúcar para etanol e energia eléctrica. In: Cortez LAB (ed) Bioetanol de cana-de-açúcar. P&D para produtividade e sustentabilidade, Blucher, São Paulo, pp 561–575

    Google Scholar 

  • Leal MRLV, Galdos MV, Scarpare FV, Seabra JEA, Walter AS, de Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use. A literature review. Biomass Bioenergy 53:11–19

    Article  Google Scholar 

  • Luo L, van der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sust Energ Rev 13(6–7):1613–1619

    Article  CAS  Google Scholar 

  • Magalhães PSG, Nogueira LAH, Cantarella H, Rossetto R, Franco HCJ, Braunbeck OA (2012) Agro-industrial technological paths. In: Poppe MK, Cortez LAB (eds) Sustainability of sugarcane bioenergy. CGEE, Brasília, pp 27–69

    Google Scholar 

  • Milanez AY, Nyko D, Valente MS, Bonomi A, Jesus CDF, Watanabe MDB, Chagas MF, Junqueira TL, Gouvêia VLRD (2015) De promessa a realidade. como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar: uma avaliação do potencial competitivo e sugestões de política pública. BNDES Setorial 41:237–294

    Google Scholar 

  • Nassar AM, Rudorff BFT, Barcellos Antoniazzi L, Alves de Aguiar D, Rumenos Piedade Bacchi M, Adami M (2008) Prospects of the sugarcane expansion in Brazil: impacts on direct and indirect land use changes. In: Zuurbier P, van de Vooren J (eds) Sugarcane ethanol. Wageningen Academic Publishers, The Netherlands

    Google Scholar 

  • Nogueira LAH, Seabra JEA, Best G, Leal MRLV, Poppe MK (2008a) Sugarcane based bioethanol: energy for sustainable development. Banco Nacional de Desenvolvimento Econômico e Social

  • Nogueira LAH, Seabra JEA, Best G, Leal MRLV, Poppe MK (2008b) Sugarcane-based bioethanol. Energy for sustainable development. BNDES and CGEE

  • Ometto AR, Hauschild MZ, Lopes Roma WN (2009) Life cycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14(3):236–247

    Article  CAS  Google Scholar 

  • Petersen MØ, Larsen J, Thomsen MH (2009) Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33(5):834–840

    Article  CAS  Google Scholar 

  • Reijnders L (2006) Conditions for the sustainability of biomass based fuel use. Energy Policy 34(7):863–876

    Article  Google Scholar 

  • Rein P (2017) Cane sugar engineering, 2nd edn. Verlag Dr. Albert Bartens KG, Berlin

    Google Scholar 

  • Rezende MCAF, Silva RJ, Klein BC, Junqueira TL, Chagas MF, Cavalett O, Filho RM, Bonomi A (2016) Technical, economic and environmental assessment of ethanol production using a biochemical- thermochemicaln hybrid route. Chem Eng Trans 2016(50):145–150. https://doi.org/10.3303/CET1650025

    Article  Google Scholar 

  • Ribeiro PR (2003) A Usina de Açúcar e sua Automação, 2nd edn

  • Roy P, Tokuyasu K, Orikasa T, Nakamura N, Shiina T (2012) A review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass. JARQ 46(1):41–57

    Article  CAS  Google Scholar 

  • Solomon S, Singh P (2015) Chapter 3: Sugarcane as an alternative source of sustainable energy. In: Bhardwaj AK, Chen J, Zenone T (eds) Sustainable biofuels. An ecological assessment of future energy. De Gruyter, Berlin, pp 21–58

    Google Scholar 

  • thinkstep (2017) Database for life cycle engineering, Leinfelden-Echterdingen

  • Tsiropoulos I, Faaij APC, Seabra JEA, Lundquist L, Schenker U, Briois J-F, Patel MK (2014) Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int J Life Cycle Assess 19(5):1049–1067

    Article  CAS  Google Scholar 

  • Walter AS, Dolzan P, Quilodrán O, Garcia J, da Silva C, Piacente F, Segerstedt A (2008) A sustainability analysis of the Brazilian ethanol, Campinas

  • Wiloso EI, Heijungs R, de Snoo GR (2012) LCA of second generation bioethanol: a review and some issues to be resolved for good LCA practice. Renew Sust Energ Rev 16(7):5295–5308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Brazilian colleagues Antonio Bonomi, Edvaldo Rodrigues, and Otavio Cavallet for their support and providing primary data for agricultural activities of sugarcane in Brazil that were generated by the CanaSoft model which had been developed by those researchers at CTBE, Campinas - São Paulo, Brazil.

Funding

This work was funded by the European Commission under the FP7 Programme (Proethanol2G grant #251151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Maga.

Additional information

Responsible editor: Shabbir Gheewala

Electronic supplementary material

ESM 1

(DOCX 3602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maga, D., Thonemann, N., Hiebel, M. et al. Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int J Life Cycle Assess 24, 266–280 (2019). https://doi.org/10.1007/s11367-018-1505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1505-1

Keywords

Navigation