The importance of using life cycle assessment in policy support to determine the sustainability of fishing fleets: a case study for the small-scale xeito fishery in Galicia, Spain

  • Pedro Villanueva-Rey
  • Ian Vázquez-Rowe
  • Andrea Arias
  • Maria Teresa Moreira
  • Gumersindo Feijoo



Drift net fishing activities have undergone a thorough revision at a European Union level, since authorities argue that several loopholes still exist in the legislation that allow small-scale fisheries to use these gears. High incidental catches, or the lack of selectivity, are some of the primary scientific criteria behind this discussion. This new framework is of particular interest in the region of Galicia (NW Spain) due to the social importance of small-scale fishing vessels using drift nets. In fact, over 400 vessels have a licence to capture European pilchard (Sardina pilchardus) with a fishing gear called xeito, which is a small-scale drift net.


The main goal of this article is to provide stakeholders in the fishing sector with environmentally relevant results regarding the life cycle impacts linked to fishing practices performed by small-scale vessels using the xeito gear to target European pilchard. We hypothesize that environmental impacts computed with LCA will provide additional insights to the sustainability of the pilchard small-scale fishery in NW Spain, adding a series of criteria that may be useful for policy-makers to determine the consequences of forbidding this type of drift netting in the future.

Results and discussion

Results show that environmental impacts across impact categories and operational activities do not differ much from that of other similar fishing fleets examined in recent years, with fuel for propulsion being the main environmental burden in most impact categories. When conducting a statistical analysis, no significant difference in energy use was identified between this small-scale fleet and purse seiners targeting pilchard in Galicia. Moreover, the results obtained demonstrate, in line with previous studies, that European pilchard is still an energy-efficient source of animal protein option as compared to demersal fish alternatives, crustaceans, or livestock.


The results do not indicate that European pilchard landed with small-scale drift nets generates higher environmental life cycle impacts than pilchard landed by purse seiners in NW Spain. However, longer time frames for the analysis should be performed to attain results with lower uncertainty.


Drift net Industrial ecology LCA NW Spain Policy support Xeito fishery 



The authors with affiliation to the University of Santiago de Compostela (Spain) belong to CRETUS (Astrup et al., 2015/02) and the Galician Competitive Research Group GRC ED431C 2017/29, programme co-funded by Xunta de Galicia and FEDER. Dr. Ian Vázquez-Rowe and Dr. Pedro Villanueva-Rey wish to thank the Galician Government for financial support (I2C postdoctoral student grants programme). The authors wish to thank Miguel Ángel Iglesias and Ruperto Costa, chairmen of the association of skippers in the towns of Rianxo and Cambados, respectively, for their collaboration and support in data collection. MEP Ana Miranda is also thanked for providing valuable legislative information.

Supplementary material

11367_2017_1402_MOESM1_ESM.docx (849 kb)
ESM 1 (DOCX 849 kb)
11367_2017_1402_MOESM2_ESM.mp4 (5.5 mb)
ESM 2 (MP4 5670 kb)
11367_2017_1402_MOESM3_ESM.mp4 (4.2 mb)
ESM 3 (MP4 4342 kb)


  1. Almeida C, Vaz S, Cabral H, Ziegler F (2014) Environmental assessment of sardine (Sardina pilchardus) purse seine fishery in Portugal with LCA methodology including biological impact categories. Int J Life Cycle Assess 19:297–306CrossRefGoogle Scholar
  2. Astrup TF, Tonini D, Turconi R, Boldrin A (2015) Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Waste Manag 37:104–115CrossRefGoogle Scholar
  3. Avadí A, Vázquez-Rowe I, Fréon P (2014) Eco-efficiency assessment of the Peruvian anchoveta steel and wooden fleets using the LCA+ DEA framework. J Clean Prod 70:118–131CrossRefGoogle Scholar
  4. BOE Spanish Official Bulletin (2016) Resolución de 28 de julio de 2016, de la Secretaría General de Pesca, por la que se modifica la de 23 de febrero de 2016, por la que se establecen disposiciones de ordenación de la pesquería de la sardina ibérica (Sardina pilchardus) que se pesca en aguas ibéricas de la zona CIEM VIIIc y IXaGoogle Scholar
  5. Branch TA, Hilborn R, Haynie AC et al (2006) Fleet dynamics and fishermen behaviour: lessons for fisheries managers. Can J Fish Aquat Sci 63:1647–1668CrossRefGoogle Scholar
  6. Churchill R, Owen D (2010) The EC common fisheries policy. Oxford University PressGoogle Scholar
  7. Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783CrossRefGoogle Scholar
  8. (2017) : free maps, free blank maps, free outline maps, free base maps [WWW Document]. URL (accessed 1.20.17)
  9. Eigaard OR, Marchal P, Gislason H, Rijnsdorp AD (2014) Technological development and fisheries management. Rev Fish Sci 22(2):156–174Google Scholar
  10. EP (2014). Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL laying down a prohibition on driftnet fisheries, amending Council Regulations (EC) No 850/98, (EC) No 812/2004,(EC) No 2187/2005 and (EC) No 1967/2006 and repealing Council Regulation (EC) No 894/97. European Parliament. Retrieved from: Last accessed: February 13th 2017
  11. European Commission (2010) Joint Research Centre, Institute for Environment and Sustainability, 2010. International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance. Publications Office, LuxembourgGoogle Scholar
  12. European Environment Agency (2013) EMEP / technical guidance to prepare national emission inventories. Publications Office, LuxembourgGoogle Scholar
  13. Fréon P, Avadí A, Vinatea Chavez RA, Iriarte Ahón F (2014) Life cycle assessment of the Peruvian industrial anchoveta fleet: boundary setting in life cycle inventory analyses of complex and plural means of production. Int J Life Cycle Assess 19:1068–1086CrossRefGoogle Scholar
  14. Galician Parliament (2014) Proposición non de lei: arte de xeito. Retrieved from: Last accessed: February 13th 2017 (in Galician)
  15. Goedkoop M, Heijungs R, Huijbregts M, Schryver A, Struijis J, Van Zelm R (2009). ReCIPE 2008. A life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpointGoogle Scholar
  16. González-García S, Villanueva-Rey P, Belo S, Vázquez-Rowe I, Moreira MT, Feijoo G, Arroja L (2015) Cross-vessel eco-efficiency analysis. A case study for purse seining fishing from North Portugal targeting European pilchard. Int J Life Cycle Assess 20(7):1019–1032CrossRefGoogle Scholar
  17. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRefGoogle Scholar
  18. Hospido A, Tyedmers P (2005) Life cycle environmental impacts of Spanish tuna fisheries. Fish Res 76:174–186CrossRefGoogle Scholar
  19. Huijbregts MA, Gilijamse W, Ragas AM, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37(11):2600–2608CrossRefGoogle Scholar
  20. ICES (2016) Sardine (Sardina pilchardus) in divisions 8.c and 9.a (Cantabrian Sea and Atlantic Iberian waters). ICES Advice on fishing opportunities, catch, and effort Bay of Biscay and the Iberian Coast Ecoregion. International Council for the Exploration of the Sea. Retrieved from: Last accessed: February 2nd 2017
  21. ISO (2006a) ISO 14040. Environmental management – life cycle assessment – principles and framework. International Standards OrganizationGoogle Scholar
  22. ISO (2006b) ISO 14044. Environmental management—life cycle assessment—requirements and management. International Standards OrganizationGoogle Scholar
  23. Jafarzadeh S, Ellingsen H, Aanondsen SA (2016) Energy efficiency of Norwegian fisheries from 2003 to 2012. J Clean Prod 112:3616–3630CrossRefGoogle Scholar
  24. Juaristi-Abaunz I (2014) Parliamentary question for written answer to the Commission. Subject: Exclusion of ‘xeito’ fishing gear used by Galician fleet from the prohibition on driftnet fishing. European Parliament. Retrieved from: Last accessed: February 13th 2017
  25. Laso J, Vázquez-Rowe I, Margallo M, Crujeiras RM, Irabien A, Aldaco R (2017) Life cycle assessment of European anchovy (Engraulis encrasicolus) landed by purse seine vessels in northern Spain. Int J Life Cycle Assess.
  26. Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 11(1):161–179CrossRefGoogle Scholar
  27. MAPAMA (Ministry for the Environment and Rural and Marine Affairs) (2016) Estadísticas pesqueras: Capturas de pesca marítima - Estadística de capturas y desembarcos de pesca marítima - Pesca marítima - Estadísticas pesqueras - Estadísticas - [WWW Document]. URL (accessed 19.1.17)
  28. Noya I, Villanueva-Rey P, González-García S, Fernandez MD, Rodriguez MR, Moreira MT (2017) Life cycle assessment of pig production: a case study in Galicia. J Clean Prod 142:4327–4338CrossRefGoogle Scholar
  29. Parker RW, Tyedmers PH (2015) Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fish 16(4):684–696CrossRefGoogle Scholar
  30. Pita P, Fernández-Vidal D, García-Galdo J, Muíño R (2016) The use of the traditional ecological knowledge of fishermen, cost-effective tools and participatory models in artisanal fisheries: towards the co-management of common octopus in Galicia (NW Spain). Fish Res 178:4–12CrossRefGoogle Scholar
  31. Plevin RJ, Delucchi MA, Creutzig F (2014) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18(1):73–83CrossRefGoogle Scholar
  32. Prellezo R, Curtin R (2015) Confronting the implementation of marine ecosystem-based management within the common fisheries policy reform. Ocean Coastal Manage 117:43–51CrossRefGoogle Scholar
  33. PRè-Product Ecology Consultants (2016) SimaPro 8.2 PRè Consultants. The NetherlandsGoogle Scholar
  34. Ramos S, Vázquez-Rowe I, Artetxe I, Moreira MT, Feijoo G, Zufía J (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int J Life Cycle Assess 16:599–610CrossRefGoogle Scholar
  35. REE (Red Eléctrica de España) (2015) Informe del sistema elétrico español 2014. Red Eléctrica de España, MadridGoogle Scholar
  36. REE (Red Eléctrica de España) (2017) Avance del Informe del sistema elétrico español 2016. Red Eléctrica de España, MadridGoogle Scholar
  37. Sala A (2016) Review of the EU small-scale driftnet fisheries. Mar Policy 74:236–244CrossRefGoogle Scholar
  38. Salomon M, Markus T, Dross M (2014) Masterstroke or paper tiger—the reform of the EU’s Common Fisheries Policy. Mar Policy 47:76–84CrossRefGoogle Scholar
  39. Santos MB, González-Quirós R, Riveiro I, Cabanas JM, Porteiro C, Pierce GJ (2011) Cycles, trends, and residual variation in the Iberian sardine (Sardina pilchardus) recruitment series and their relationship with the environment. ICES J Mar Sci Journal du Conseil 69(5):739–750Google Scholar
  40. Senra-Rodríguez L (2014) Parliamentary question for written answer to the Commission. Subject: Ban on fishing using traditional, non-industrial driftnets. European Parliament. Retrieved from: Last accessed: February 13th 2017
  41. Tyedmers PH, Watson R, Pauly D (2005) Fueling global fishing fleets. Ambio 34:635–638CrossRefGoogle Scholar
  42. Vázquez-Rowe I, Tyedmers P (2013) Identifying the importance of the “skipper effect” within sources of measured inefficiency in fisheries through data envelopment analysis (DEA). Mar Policy 38:387–396CrossRefGoogle Scholar
  43. Vázquez-Rowe I, Moreira MT, Feijoo G (2010) Life cycle assessment of horse mackerel fisheries in Galicia (NW Spain): comparative analysis of two major fishing methods. Fish Res 106:517–527CrossRefGoogle Scholar
  44. Vázquez-Rowe I, Hospido A, Moreira MT, Feijoo G (2012) Best practices in life cycle assessment implementation in fisheries. Improving and broadening environmental assessment for seafood production systems. Trends Food Sci Technol 28:116–131CrossRefGoogle Scholar
  45. Vázquez-Rowe I, Moreira M, Feijoo G (2013) Carbon footprint analysis of goose barnacle (Pollicipes pollicipes) collection on the Galician coast (NW Spain). Fish Res 143:191–200CrossRefGoogle Scholar
  46. Vázquez-Rowe I, Marvuglia A, Rege S, Benetto E (2014a) Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Sci Total Environ 472:78–89CrossRefGoogle Scholar
  47. Vázquez-Rowe I, Villanueva-Rey P, Hospido A, Moreira MT, Feijoo G (2014b) Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain). Sci Total Environ 475:48–60CrossRefGoogle Scholar
  48. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2014c) Edible protein energy return on investment ratio (ep-EROI) for Spanish seafood products. Ambio 43:381–394CrossRefGoogle Scholar
  49. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2014d) A review of energy use and greenhouse gas emissions from worldwide hake fishing. In: Muthu SS (ed) Assessment of carbon footprint in different industrial sectors, vol 2. Springer Singapore, Singapore, pp 1–29Google Scholar
  50. Vázquez-Rowe I, Reyna JL, García-Torres S, Kahhat R (2015) Is climate change-centrism an optimal policy making strategy to set national electricity mixes? Appl Energ 159:108–116CrossRefGoogle Scholar
  51. VDI-Richtlinien (1997) Cumulative energy demand: terms, definitions, methods of 536 calculation. VDI-Richtlinien. ed, DüsseldorfGoogle Scholar
  52. Villasante S, Pierce GJ, Pita C, Guimeráns CP, Rodrigues JG, Antelo M, Sumaila UR (2016a) Fishers’ perceptions about the EU discards policy and its economic impact on small-scale fisheries in Galicia (North West Spain). Ecol Econ 130:130–138CrossRefGoogle Scholar
  53. Villasante S, Pita C, Pierce GJ, Guimeráns CP, Rodrigues JG, Antelo M, Coll M (2016b) To land or not to land: how do stakeholders perceive the zero discard policy in European small-scale fisheries? Mar Policy 71:166–174CrossRefGoogle Scholar
  54. Weidema BP, Bauer C, Hischier R, Nemecek T, Reinhard J, Vadenbo CO, Wernet G (2013) Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1 (v3). ecoinvent report No. 1, v3.0. Swiss Centre for Life Cycle Inventories, St. GallenGoogle Scholar
  55. Xunta de Galicia (2011) DECRETO 15/2011, de 28 de enero, por el que se regulan las artes, aparejos, útiles, equipos y técnicas permitidos para la extracción profesional de los recursos marinos vivos en aguas de competencia de la Comunidad Autónoma de Galicia., DOG n° 31 de 2011Google Scholar
  56. Xunta de Galicia (2013) Orden del DOG n° 94 de 2013/5/20 por la que se modifica la Orden de 26 de octubre de 2004 por la que se regula la alternancia de artes para embarcaciones que pesquen en aguas de la Comunidad Autónoma de Galicia, DOG n° 94 de 2013Google Scholar
  57. Xunta de Galicia (2016) RESOLUCIÓN de 28 de mayo de 2016 por la que se aprueba el plan de gestión de la sardina con arte de xeito, para el año 2016, en el ámbito de la Comunidad Autónoma de Galicia. DOG n° 124 de 2016.Xunta de Galicia, 2017a. Instituto Galego de Estatística [WWW Document]. IGE: Instituto Galego de Estatística. URL (accessed 02.02.17)
  58. Xunta de Galicia (2017a) Plataforma Tecnolóxica da Pesca. Estatísticas [WWW Document]. Pesca de Galicia. Xunta de Galicia. Consellería do Mar. URL (accessed 02.02.17)
  59. Xunta de Galicia (2017b) A pesca en Galicia : A actividade económica [WWW Document]. Consellería de Educación. Libros para a educación secundaria a distancia. Ámbito da sociedade. URL (accessed 2.6.17)
  60. Xunta de Galicia (2017c) A pesca en Galicia: A actividade económica [WWW Document]. Consellería de Educación. Libros para a educación secundaria a distancia. Ámbito da sociedade. URL (accessed 2.6.17)
  61. Ziegler F, Hornborg S (2014) Stock size matters more than vessel size: the fuel efficiency of Swedish demersal trawl fisheries 2002–2010. Mar Policy 44:72–81CrossRefGoogle Scholar
  62. Ziegler F, Emanuelsson A, Eichelsheim JL, Flysjö A, Ndiaye V, Thrane M (2011) Extended life cycle assessment of southern pink shrimp products originating in Senegalese artisanal and industrial fisheries for export to Europe. J Ind Ecol 15(4):527–538CrossRefGoogle Scholar
  63. Ziegler F, Hornborg S, Green BS, Eigaard OR, Farmery AK, Hammar L, Hartmann K, Molander S, Parker R, Skontorp Hognes E, Vázquez-Rowe I, Smith ADM (2016) Expanding the concept of sustainable fisheries: measuring the sustainability of seafood supply chains using a life cycle perspective. Fish Fish 17(4):1073–1093CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Pedro Villanueva-Rey
    • 1
    • 2
  • Ian Vázquez-Rowe
    • 1
    • 3
  • Andrea Arias
    • 1
  • Maria Teresa Moreira
    • 1
  • Gumersindo Feijoo
    • 1
  1. 1.Department of Chemical Engineering, Institute of TechnologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centre for Environmental and Marine Studies (CESAM), Department of Environment and PlanningUniversity of Aveiro, Campus Universitário de SantiagoAveiroPortugal
  3. 3.Peruvian LCA Network, Department of EngineeringPontificia Universidad Católica del PerúLimaPeru

Personalised recommendations