Advertisement

Environmental assessment of the Peruvian industrial hake fishery with LCA

  • Angel Avadí
  • René Adrien
  • Víctor Aramayo
  • Pierre Fréon
CHALLENGES AND BEST PRACTICE IN LCAS OF SEAFOOD AND OTHER AQUATIC PRODUCTS

Abstract

Purpose

The Peruvian hake (Merluccius gayi peruanus) stock has been in a delicate state in the last decades due to overexploitation combined with adverse climatic events. The stock is showing certain signs of recovery since 2012. This work analyses the environmental impacts of current fleet operations and its likely trend.

Methods

The fleet was divided into coherent segments, per holding capacity and engine power. The validity of both segmentations, as well as the presence of an effect of economies of scale driving fuel use intensity (FUI), was tested. Life cycle assessment was used to calculate environmental impacts, per individual sampled vessel and per segment, complemented with indicators of energy efficiency and biotic resource depletion.

Results and discussion

The fleet is highly fuel-efficient (120 kg fuel per tonne fish) when compared with other reported values, despite a large overcapacity that increases the impact of the construction and maintenance phases. Significant inter-annual FUI variations were observed (80.0 kg t−1 in 2008 to 210.3 kg t−1 in 2006), but no clear trend. Neither significant differences in FUI among fleet segments nor a clear effect of economies of scale were found (but FUI analysis was based on a small sample of 32 values for nine vessels, two of which had data for a single year). Only the largest vessels, featuring 242 m3 holding capacity and 850 hp engine power, were found to have lower FUI than any of the other vessels, but no statistical test could be applied to validate this difference. Differences in environmental impacts of individual vessels are mostly dominated by their relative FUI. Fuel use and, to a lower extent, maintenance are the main sources of environmental impacts. The most contributing impacts to ReCiPe single score are climate change, human toxicity and fossil depletion. The fishery’s impacts on the biotic natural resource were orders of magnitude higher than many other global hake stocks, due to overexploitation.

Conclusions

The environmental impacts of the national hake fleet are relatively low during the study period, despite an overcapacity of the fleet. With the perspective of expanding its operations and obtaining better yields on the eventuality that the stock fully recovers, these impacts should decrease. More research based on additional FUI data is necessary to effectively compare the performance of these vessels with larger ones (featuring >180 m3 and >500 hp, of which nine existed in 2016) before possibly recommending their preferential use.

Keywords

Biotic resource depletion Fleet management Fuel use intensity Life cycle assessment Trawling 

Notes

Acknowledgements

This work, carried out by members (AA and PF) of the finalised Anchoveta Supply Chain (ANCHOVETA-SC) project (http://anchoveta-sc.wikispaces.com), is a contribution to the International Join Laboratory “Dynamics of the Humboldt Current System” (LMI-DISCOH) coordinated by the Institut de Recherche pour le Développement (IRD) and the Instituto del Mar del Peru (IMARPE), and gathering several other institutions. It was carried out under the sponsoring of the Direction des Programmes de Recherche et de la formation au Sud (DPF) of the IRD.

Supplementary material

11367_2017_1364_MOESM1_ESM.doc (928 kb)
ESM 1 (DOC 928 kb).

References

  1. Avadí A (2014) Durabilité de la filière d’anchois du Pérou, de la mer aux rayonnages (Sustainability of the Peruvian anchoveta supply chains from sea to shelf: towards a new strategy for optimal resource use). Université Montpellier 2, Doctoral School SIBAGHEGoogle Scholar
  2. Avadí A, Fréon P (2013) Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fish Res 143:21–38CrossRefGoogle Scholar
  3. Avadí A, Fréon P (2014) A set of sustainability performance indicators for seafood: direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol Indic 48:518–532CrossRefGoogle Scholar
  4. Avadí A, Vázquez-Rowe I, Fréon P (2014) Eco-efficiency assessment of the Peruvian anchoveta steel and wooden fleets using the LCA+DEA framework. J Clean Prod 70:118–131Google Scholar
  5. Avadí A, Bolaños C, Sandoval I, Ycaza C (2015) Life cycle assessment of Ecuadorian processed tuna. Int J Life Cycle Assess 20:1415–1428CrossRefGoogle Scholar
  6. Cashion T, Hornborg S, Ziegler F et al (2016) Review and advancement of the marine biotic resource use metric in seafood LCAs: a case study of Norwegian salmon feed. Int J Life Cycle Assess 21:1106–1120CrossRefGoogle Scholar
  7. CeDePesca (2010) Merluza peruana (Merluccius gayi peruanus): Ficha Técnica de la Pesquería (Peruvian hake (Merluccius gayi peruanus): Technical sheet of the fishery). Mar del Plata: Centro Desarrollo y Pesca SustentableGoogle Scholar
  8. CeDePesca (2015) Informe sobre el estado actual de la población de la merluza peruana (Merluccius gayi peruanus) y proyección de la captura biológicamente aceptable en el año 2015 (Report on the current state of the Pacific hake stock and estimation of biologically accept. Centro Desarrollo y Pesca Sustentable Filial PerúGoogle Scholar
  9. Chavez FP, Bertrand A, Guevara-Carrasco R et al (2008) The Northern Humboldt Current System: brief history, present status and a view towards the future. Prog Oceanogr 79:95–105CrossRefGoogle Scholar
  10. Daw T, Adger WN, Brown K (2009) Climate change and capture fisheries: potential impacts, adaptation and mitigation. In: Cochrane K, Young C De, Soto D, Bahri T (eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530, pp 107–150Google Scholar
  11. Durán LE, Oliva M (1980) Estudio parasitologico en Merluccius gayi peruanus Gingsburg 1954 (Parasitological study of Merluccius gayi peruanus). Bol Chil Parasitol 35:18–21Google Scholar
  12. Emanuelsson A, Ziegler F, Pihl L et al (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19:1156–1168CrossRefGoogle Scholar
  13. FAO (2003) Food energy—methods of analysis and conversion. Fao Food Nutr Pap 77 Rep a Tech Work Rome, 3–6 December 2002 93. doi: ISSN 0254–4725Google Scholar
  14. Fréon P, Avadí A, Marin Soto W, Negrón R (2014a) Environmentally extended comparison table of large- versus small- and medium-scale fisheries: the case of the Peruvian anchoveta fleet. Can J Fish Aquat Sci 71:1459–1474CrossRefGoogle Scholar
  15. Fréon P, Avadí A, Vinatea RA, Iriarte F (2014b) Life cycle assessment of the Peruvian industrial anchoveta fleet: boundary setting in life cycle inventory analyses of complex and plural means of production. Int J Life Cycle Assess 19:1068–1086CrossRefGoogle Scholar
  16. Froese R, Pauly D (Eds.) (2014) FishBase. World Wide Web electronic publication. www.fishbase.org
  17. Goedkoop M, Heijungs R, Huijbregts M et al. (2009) ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition Report I: CharacterisationGoogle Scholar
  18. Harley S, Myers R, Dunn A (2001) Is catch-per-unit-effort proportional to abundance? Can J Fish Aquat Sci 58:1760–1772CrossRefGoogle Scholar
  19. Hauschild MZ, Goedkoop M, Guinée J et al (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697CrossRefGoogle Scholar
  20. Hélias A, Langlois J, Fréon P (2014) Improvement of the characterization factor for biotic-resource depletion of fisheries. In: 9th International Conference LCA of Food San Francisco, USA 8–10 October 2014 Improvement, pp 4–9Google Scholar
  21. Hischier R, Weidema BP, Althaus H-J et al. (2009) Implementation of life cycle impact assessment methods—ecoinvent report No. 3 (v2.1). Dübendorf: Swiss Centre for Life Cycle InventoriesGoogle Scholar
  22. Hutchings JA (2000) Collapse and recovery of marine fishe. Nature 406:882–885CrossRefGoogle Scholar
  23. ICES (2015) ICES stock assessment database. In: Int. Counc. Explor. Sea (ICES), CopenhagenGoogle Scholar
  24. Icochea Salas LA (2013) Crucero de Evaluación de la Merluza con Embarcaciones Industriales replicando el Cr13-0506 realizado por IMARPE a bordo del BIC Humboldt. Informe Final (Hake assessment cruise with industrial vessels replicating campaign Cr13–0506 made by IMARPE onboard t. Lima: Universidad Nacional Agraria La MolinaGoogle Scholar
  25. IMARPE (2008) La pesquería de merluza en el mar peruano: Régimen Provisional de Pesca 2007 (The hake fisheries in the Peruvian sea: Provisional fisheries regime 2007). Lima: Instituto del Mar del PerúGoogle Scholar
  26. IMARPE (2009) Informe del Tercer Panel Internacional de Expertos de Evaluación de la merluza peruana Merluccius gayi peruanus Ginsburg. Manejo Precautorio de la Merluza Peruana. Callao 24–28 de marzo 2008Google Scholar
  27. ISO (2006a) ISO 14040 Environmental management—life cycle assessment—principles and framework. The International Standards OrganisationGoogle Scholar
  28. ISO (2006b) ISO 14044 Environmental management—life cycle assessment—requirements and guidelines. The International Standards OrganisationGoogle Scholar
  29. Jones AC, Mead A, Kaiser MJ et al (2014) Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish Fish n/a-n/a. doi: 10.1111/faf.12086
  30. Langlois J, Fréon P, Delgenes JP et al (2014) New methods for impact assessment of biotic-resource depletion in life cycle assessment of fisheries: theory and application. J Clean Prod 73:63–71CrossRefGoogle Scholar
  31. Montecino V, Lange CB (2009) The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Prog Oceanogr 83:65–79CrossRefGoogle Scholar
  32. Nijdam D, Rood T, Westhoek H (2012) The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37:760–770CrossRefGoogle Scholar
  33. Paredes CE (2012) Eficiencia y equidad en la pesca peruana: La reforma y los derechos de pesca (Efficiency and equity in Peruvian fisheries: Reform and fishing rights). Lima: Instituto del PerúGoogle Scholar
  34. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257CrossRefGoogle Scholar
  35. Pauly D, Christensen V, Guénette S et al (2002) Towards sustainability in world fisheries. Nature 418:689–695CrossRefGoogle Scholar
  36. Pelletier N, Audsley E, Brodt S et al (2011) Energy intensity of agriculture and food systems. Annu Rev Environ Resour 36:223–246CrossRefGoogle Scholar
  37. PRé (2012) SimaPro by Pré ConsultantsGoogle Scholar
  38. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388CrossRefGoogle Scholar
  39. Ricard D, Minto C, Jensen OP, Baum JK (2012) Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish 13:380–398CrossRefGoogle Scholar
  40. Sabaté J, Sranacharoenpong K, Harwatt H et al (2015) The environmental cost of protein food choices. Public Health Nutr 18:2067–2073CrossRefGoogle Scholar
  41. Salas EM (1972) Investigación parasitológica de la merluza (Merlucius gayii peruanus). Callao: Instituto del Mar del PerúGoogle Scholar
  42. Shin Y, Shannon LJ, Bundy A et al (2010) Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 2. Setting the scene. ICES J Mar Sci J du Cons 67:692–716CrossRefGoogle Scholar
  43. Taelman SE, De Meester S, Schaubroeck T et al (2014) Accounting for the occupation of the marine environment as a natural resource in life cycle assessment: an exergy based approach. Resour Conserv Recycl 91:1–10CrossRefGoogle Scholar
  44. Tam J, Taylor MH, Blaskovic V et al (2008) Trophic modeling of the Northern Humboldt Current Ecosystem, part I: comparing trophic linkages under La Niña and El Niño conditions. Prog Oceanogr 79:352–365CrossRefGoogle Scholar
  45. Thorlindsson T (1988) The skipper effect in the Icelandic herring fishery. Hum Organ 47:199–212CrossRefGoogle Scholar
  46. Tyedmers PH (2000) Salmon and sustainability: the biophysical cost of producing salmon through the commercial salmon fishery and the intensive salmon culture industry. The University of British ColumbiaGoogle Scholar
  47. Tyedmers P (2004) Fisheries and energy use. Encycl. Energy 1:784Google Scholar
  48. Tyedmers PH, Watson R, Pauly D (2005) Fueling global fishing fleets. Ambio 34:635–638CrossRefGoogle Scholar
  49. Utne IB (2009) Life cycle cost (LCC) as a tool for improving sustainability in the Norwegian fishing fleet. J Clean Prod 17:335–344CrossRefGoogle Scholar
  50. Vázquez-Rowe I, Tyedmers P (2013) Identifying the importance of the “skipper effect” within sources of measured inefficiency in fisheries through data envelopment analysis (DEA). Mar Policy 38:387–396CrossRefGoogle Scholar
  51. Vázquez-Rowe I, Moreira MT, Feijoo G (2011) Life cycle assessment of fresh hake fillets captured by the Galician fleet in the northern stock. Fish Res 110:128–135CrossRefGoogle Scholar
  52. Vázquez-Rowe I, Hospido A, Moreira MT, Feijoo G (2012) Best practices in life cycle assessment implementation in fisheries. Improving and broadening environmental assessment for seafood production systems. Trends Food Sci Technol 28:116–131CrossRefGoogle Scholar
  53. Vázquez-Rowe I, Villanueva-Rey P, Mallo J et al (2013) Carbon footprint of a multi-ingredient seafood product from a business-to-business perspective. J Clean Prod 44:200–210CrossRefGoogle Scholar
  54. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2014a) Edible protein energy return on investment ratio (ep-EROI) for Spanish seafood products. Ambio 43:381–394CrossRefGoogle Scholar
  55. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2014b) A review of energy use and greenhouse gas emissions from worldwide hake fishing. In: Muthu SS (ed) Assessment of Carbon Footprint in Different Industrial Sectors, Volume 2. Springer, Hong Kong, pp 1–30Google Scholar
  56. VDI (1997) Cumulative energy demand—terms, definitions, methods of calculation. Verein Deutscher Ingenieure, DüsseldorfGoogle Scholar
  57. Wosnitza-Mendo C, Guevara-carrasco R, Ballón M (2005) Causas posibles de la drástica disminución de la longitud media de la merluza peruana en 1992 (Possible causes of the drastic decline in mean length of Peruvian hake in 1992). Callao: Instituto del Mar del Perú (IMARPE)Google Scholar
  58. Ziegler F, Hornborg S (2014) Stock size matters more than vessel size: the fuel efficiency of Swedish demersal trawl fisheries 2002-2010. Mar Policy 44:72–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.ex-UMR 212 EME, Institut de Recherche pour le Développement (IRD)Université Montpellier I, Centre de Recherche Halieutique Méditerranéenne et TropicaleSETE cedexFrance
  2. 2.CIRAD, UPR Recyclage et risqueMontpellierFrance
  3. 3.Overseas Solution Development (OSS)Nantes cedexFrance
  4. 4.Facultad de Ciencias Biológicas, Unidad de PostgradoUniversidad Nacional Mayor de San MarcosLima 100Peru
  5. 5.UMR 248 MARBEC, Institut de recherche pour le développement (IRD). Centre de Recherche Halieutique Méditerranéenne et TropicaleSETE cedexFrance

Personalised recommendations