Life cycle assessment of European anchovy (Engraulis encrasicolus) landed by purse seine vessels in northern Spain

  • Jara Laso
  • Ian Vázquez-Rowe
  • María Margallo
  • Rosa M. Crujeiras
  • Ángel Irabien
  • Rubén Aldaco



The main purpose of this article is to assess the environmental impacts associated with the fishing operations related to European anchovy fishing in Cantabria (northern Spain) under a life cycle approach.


The life cycle assessment (LCA) methodology was applied for this case study including construction, maintenance, use, and end of life of the vessels. The functional unit used was 1 kg of landed round anchovy at port. Inventory data were collected for the main inputs and outputs of 32 vessels, representing a majority of vessels in the fleet.

Results and discussion

Results indicated, in a similar line to what is reported in the literature, that the production, transportation, and use of diesel were the main environmental hot spots in conventional impact categories. Moreover, in this case, the production and transportation of seine nets was also relevant. Impacts linked to greenhouse gas (GHG) emissions suggest that emissions were in the upper range for fishing species captured with seine nets and the value of global warming potential (GWP) was 1.44 kg CO2 eq per functional unit. The ecotoxicity impacts were mainly due to the emissions of antifouling substances to the ocean. Regarding fishery-specific categories, many were discarded given the lack of detailed stock assessments for this fishery. Hence, only the biotic resource use category was computed, demonstrating that the ecosystems’ effort to sustain the fishery is relatively low.


The use of the LCA methodology allowed identifying the main environmental hot spots of the purse seining fleet targeting European anchovy in Cantabria. Individualized results per port or per vessel suggested that there are significant differences in GHG emissions between groups. In addition, fuel use is high when compared to similar fisheries. Therefore, research needs to be undertaken to identify why fuel use is so high, particularly if it is related to biomass and fisheries management or if skipper decisions could play a role.


Engraulis encrasicolus Fuel efficiency Industrial ecology Life cycle assessment Pelagic fisheries Purse seining 



The authors thank the Ministry of Economy and Competitiveness of the Spanish Government for their financial support via the project GeSAC-Conserva: Sustainable Management of the Cantabrian Anchovies (CTM2013-43539-R) and to Pedro Villanueva-Rey for valuable scientific exchange. Jara Laso thanks the Ministry of Economy and Competitiveness of Spanish Government for their financial support via the research fellowship BES-2014-069368 and to the Ministry of Rural Environment, Fisheries and Food of Cantabria for the data support. Dr. Ian Vázquez-Rowe thanks the Peruvian LCA Network for operational support. Reviewers are also thanked for the valuable and detailed suggestions. The work of Dr. Rosa M. Crujeiras has been funded by MTM2016-76969P (AEI/FEDER, UE).

Supplementary material

11367_2017_1318_MOESM1_ESM.docx (184 kb)
ESM 1 (DOCX 183 kb)


  1. Almeida C, Vaz S, Cabral H, Ziegler F (2014) Environmental assessment of sardine (Sardina pilchardus) purse seine fishery in Portugal with LCA methodology including biological impact categories. Int J Life Cycle Assess 19:297–306CrossRefGoogle Scholar
  2. Avadí A, Fréon P (2015) A set of sustainability performance indicators for seafood: direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol Indic 48:518–532CrossRefGoogle Scholar
  3. Avadí A, Fréon P, Quispe I (2014a) Environmental assessment of Peruvian anchoveta food products: is less refined better? Int J Life Cycle Assess 19(6):1276–1293CrossRefGoogle Scholar
  4. Avadí A, Vázquez-Rowe I, Fréon P (2014b) Eco-efficiency assessment of the Peruvian anchoveta steel and wooden fleets using the LCA+DEA framework. J Clean Prod 70:118–131CrossRefGoogle Scholar
  5. Ayer N, Tyedmers P, Pelletier N, Sonesson U, Scholz A (2007) Co-product allocation in life cycle assessment of seafood production systems: review of problems and strategies. Int J of Life Cycle Assess 12(7):480–487CrossRefGoogle Scholar
  6. Bala A, Raugei M, Fullana i Palmer P (2014) Introducing a new method for calculating the environmental credits of end-of-life material recovery in attributional LCA. Int J Life Cycle Assess 20(5):645–654Google Scholar
  7. Basurko OC, Gabiña G, Uriondo Z (2013) Energy performance of fishing vessels and potential savings. J Clean Prod 54:30–40CrossRefGoogle Scholar
  8. Boulay AM, Bare J, De Camillis C, Döll P, Gassert F, Gerten D, Humbert S, Inaba A, Itsubo N, Lemoine Y, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Schencker U, Shirakawa N, Vionnet S, Worbe S, Yoshikawa S, Pfister S (2015) Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20(5):577–583CrossRefGoogle Scholar
  9. Brown J, Macfadyen G (2007) Ghost fishing in European waters: impacts and management responses. Mar Policy 31(4):488–504CrossRefGoogle Scholar
  10. Cashion T, Tyedmers P, Parker R (2016) What we feed matters: differences in life cycle greenhouse gas emissions and primary productivity requirements to sustain provision of fish meals and oils. LCA of Foods 2016, DublinGoogle Scholar
  11. Choi J, Kelley D, Murphy S, Thangamani D (2016) Economic and environmental perspectives of end-of-life ship management. Resour Conserv Recy 107:82–91CrossRefGoogle Scholar
  12. Coll M, Palomera I, Tudela S, Sardà F, (2006) Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. J Marine Syst 59:63–96Google Scholar
  13. Ecoinvent (2016). Available at
  14. Emanuelsson A, Ziegler F, Pihl L, Sköld M, Sonesson U (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19(5):1156–1168CrossRefGoogle Scholar
  15. EMEP/EEA (2013) Air pollutant emission inventory guidebook. Available at Google Scholar
  16. EMEP-Corinair (2006) Emissions inventory guidebook. Available at Google Scholar
  17. Eurofish (2012) Overview of the world’s anchovy sector and trade possibilities for Georgian anchovy products. Eurofish International OrganizationGoogle Scholar
  18. European Commission (2011) Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union, L 174/88Google Scholar
  19. European Commission (2012) Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off J Eur Union, L 197/38Google Scholar
  20. FAO (2016) Food and Agriculture Organization of the United Nations. Available at:
  21. FishBase (2016) Available at
  22. Fréon P, Cury P, Shannon L, Roy C (2005) Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. B Mar Sci 76(2):385–462Google Scholar
  23. Fréon P, Avadí A, Soto WM, Negrón R (2014a) Environmentally extended comparison table of large- versus small- and medium-scale fisheries: the case of the Peruvian anchoveta fleet. Can J Fish Aquat Sci 71(10):1459–1474CrossRefGoogle Scholar
  24. Fréon P, Avadí A, Vinatea-Chavez RA, Iriarte F (2014b) Life cycle assessment of the Peruvian industrial anchoveta fleet: boundary setting in life cycle inventory analyses of complex and plural means of production. Int J Life Cycle Assess 19:1068–1086CrossRefGoogle Scholar
  25. Fréon P, Sueiro JC, Iriarte F, Miro Evar OF, Landa Y, Mittaine JF, Bouchon M (2014c) Harvesting for food versus feed: a review of Peruvian fisheries in a global context. Rev Fish Biol Fisher 24(1):381–398CrossRefGoogle Scholar
  26. Gaertner D, Pagavino M, Marcano J (1999) Influence of fisheries’ behavior on the catchability of surface tuna schools in the Venezuelan purse-seiner fishery in the Caribbean Sea. Can J Fish Aquat Sci 56:394–406Google Scholar
  27. García-Cobo PL (1998) La importancia del sector conservero en la economía de Santoña y Cantabria. Asociación de Fabricantes de Conservas de Pescado de Cantabria, pp 95–99Google Scholar
  28. Gilbert P, Wilson P, Walsh C, Hodgson P (2016) The role of material efficiency to reduce CO2 emissions during ship manufacture: a life cycle approach. Mar Policy 75:227–237CrossRefGoogle Scholar
  29. Goedkoop M, Heijungs R, Huijbregts M, Schryver A, Struijis J, Van Zelm R (2009) ReCIPE 2008. A life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpointGoogle Scholar
  30. Goedkoop M, Oele M, Leijting J, Ponsioen T, Meijer E (2016) Introduction to LCA with SimaPro 8. PRé Consultants, AmersfoortGoogle Scholar
  31. González-García S, Villanueva-Rey P, Belo S, Vázquez-Rowe I, Moreira M. T, Feijoo G, Arroja L (2015) Cross-vessel eco-efficiency analysis. A case study for purse seining fishing from North Portugal targeting European pilchard. Int J Life Cycle Assess 20:1019–1032Google Scholar
  32. Guascor (2016) Guascor marine diesel engines and systems. Available at
  33. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener A, Suh S, Udo de Haes HA (2001) Life cycle assessment. An operational guide to the ISO Standards. Centre of Environmental Science, LeidenGoogle Scholar
  34. Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modelling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697CrossRefGoogle Scholar
  35. Hornborg S, Nilsson P, Valentisson D, Ziegler F (2012) Integrated environmental assessment of fisheries management: Swedish Nephrops trawl fisheries evaluated using a life cycle approach. Mar Policy 36(6):1193–1201CrossRefGoogle Scholar
  36. Hospido A, Tyedmers P (2005) Life cycle environmental impacts of Spanish tuna fisheries. Fish Res 76:174–186CrossRefGoogle Scholar
  37. ILCD (2011) Recommendations for life cycle assessment in the European context—based on existing environmental impact assessment models and factors. Joint Research Centre. ISBN: 978-92-79-17451-3Google Scholar
  38. IPCC (2006) Guidelines for national greenhouse gas inventories. Available at
  39. IPCC (2013) Climate change 2013. The physical science basis. Working group I contribution to the 5th assessment report of the IPCC. Intergovernamental Panel on Climate Change Available at: (Last accessed: June 30th 2016)
  40. ISO (2006a) ISO 14040: environmental management-life cycle assessment—principles and framework. International Standards Organization, GenevaGoogle Scholar
  41. ISO (2006b) ISO 14044: environmental management-life cycle assessment—requirements and management. International Standards Organization., GenevaGoogle Scholar
  42. Jafarzadeh S, Ellingsen H, Aanond-Aanondsen S (2016) Energy efficiency of Norwegian fisheries from 2003 to 2012. J Clean Prod 112:3616–3630CrossRefGoogle Scholar
  43. Kahhat R, Kim J, Xu M, Allenby B, Williams E, Zhang P (2008) Exploring e-waste management systems in the United States. Resour Conserv Recy 52:955–964CrossRefGoogle Scholar
  44. Ko N, Gantner J (2016) Local added value and environmental impacts of ship scrapping in the context of a ship’s cycle. Ocean Eng 122:317–321CrossRefGoogle Scholar
  45. Langlois J, Fréon P, Delgenes JP, Steyer JP, Hélias A (2014) New methods for impact assessment of biotic-resource depletion in life cycle assessment of fisheries: theory and application. J Clean Prod 73:63–71CrossRefGoogle Scholar
  46. Langlois J, Fréon P, Delgenes JP, Steyer JP, Hélias A (2015) Sea use impact category in life cycle assessment: characterization factors for life support functions. Int J Life Cycle Assess 20:970–981CrossRefGoogle Scholar
  47. Laso J, Margallo M, Celaya J, Fullana P, Bala A, Gazulla C, Irabien A, Aldaco R (2016a) Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry. Waste Manage Res 34(8):724–733CrossRefGoogle Scholar
  48. Laso J, Margallo M, Fullana P, Bala A, Gazulla C, Irabien A, Aldaco R (2016b) Introducing life cycle thinking to define best available techniques for products: application to the anchovy canning industry. J Clean Prod doi: 10.1016/j.jclepro.2016.08.040 Google Scholar
  49. Lorenzo-Toja Y, Vázquez-Rowe I, Chenel S, Marín-Navarro D, Moreira MT, Feijoo G (2015) Eco-efficiency analysis of Spanish WWTPs using the LCA+DEA method. Water Res 68:651–666CrossRefGoogle Scholar
  50. Lovarelli D, Bacenetti J, Fiala M (2016) Water footprint of crop productions: a review. Sci Total Environ 548-549:236–251CrossRefGoogle Scholar
  51. Magrama (2013) Informe sobre el Estudio de Mercado de la Anchoa (Engraulis encrasicolus). Secretaría General de PescaGoogle Scholar
  52. Margallo M, Aldaco R, Irabien A, Carrillo V, Fischer M, Bala A, Fullana P (2014) Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal. Waste Manage Res 32(6):492–499CrossRefGoogle Scholar
  53. Ministry of Agriculture, Food and Environment (2015) Dossier Autonómico de la Comunidad Autónoma de Cantabria. Análisis y Prospectiva-serie Territorial, Gobierno de EspañaGoogle Scholar
  54. Nilsson P, Ziegler F (2007) Spatial distribution of fishing effort in relation to seafloor habitats in the Kattegat, a GIS analysis. Aquat Conserv 17:421–440CrossRefGoogle Scholar
  55. Niu R, Wang Z, Song Q, Li J (2012) LCA of scrap CRT display at various scenarios of treatment. Procedia Environmental Sciences 16:576–584CrossRefGoogle Scholar
  56. Parker R (2011) Measuring and characterizing the ecological foot-print and life cycle environmental cost of Antartic Krill (Euphasia superb) products. MSc thesis. Dalhousie University, CanadaGoogle Scholar
  57. Parker R, Tyedmers P (2012) Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba). Environ Sci Technol 46(9):4958–4965CrossRefGoogle Scholar
  58. Parker R, Tyedmers P (2015) Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fisheries 16:684–696CrossRefGoogle Scholar
  59. Parker RW, Hartmann K, Green BS, Gardner C, Watson RA (2015a) Environmental and economic dimensions of fuel use in Australian fisheries. J Clean Prod 87:78–86CrossRefGoogle Scholar
  60. Parker R, Vázquez-Rowe I, Tyedmers P (2015b) Fuel performance and carbon footprint of the global purse seine fleet. J Clean Prod 103:517–524CrossRefGoogle Scholar
  61. PAS 2050-2 (2012) Assessment of life cycle greenhouse gas emissions. Supplementary requirements for the application of PAS 2050:2011 to seafood and other aquatic food productsGoogle Scholar
  62. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374(6519):255–257CrossRefGoogle Scholar
  63. Pelletier N, Tyedmers P (2011) An ecological economic critique of the use of market information in life cycle assessment research. J Ind Ecol 15(3):342–354CrossRefGoogle Scholar
  64. Pelletier N, Ayer N, Tyedmers P, Kruse S, Flysjo A, Robillard G, Ziegler F, Scholz A, Sonesson U (2007) Impact categories for life cycle assessment research of seafood production systems: review and prospectus. Int J Life Cycle Assess 12(6):414–421CrossRefGoogle Scholar
  65. Plan de Residuos de Cantabria (2016) Plan de Residuos de la Comunidad Autónoma de Cantabria (2016–2022). Gobierno de CantabriaGoogle Scholar
  66. Pontes LM, Ambrosio L, García M (2015) Cantabrian Sea purse seine anchovy fishery. Bureau Veritas Certification France, pp:1–174Google Scholar
  67. Ramos S, Vázquez-Rowe I, Artetxe I, Moreira MT, Feijoo G, Zufía J (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int J Life Cycle Assess 16(7):599–610CrossRefGoogle Scholar
  68. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni MD, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRefGoogle Scholar
  69. Russell SD, Alexander RT (1996) The skipper effect debate: views from a Philippine fishery. J Anthropol Res 52(4):433–460CrossRefGoogle Scholar
  70. Ruttan L, Tyedmers P (2007) Skippers, spotters and seiners: analysis of the “skipper effect” in US menhaden (Brevoortia spp.) purse-seine fisheries. Fish Res 83:73–80CrossRefGoogle Scholar
  71. Song Q, Wang Z, Li J, Zeng X (2012) Life cycle assessment of TV sets in China: a case study of the impacts of CRT monitors. Waste Manag 32:1926–1936CrossRefGoogle Scholar
  72. Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: initiatives, practices, and consequences. Sci Total Environ 463-464:1147–1153CrossRefGoogle Scholar
  73. SUPERPROP (2012) Superior lifetime operation economy of ship propellers Available at
  74. Tyedmers P (2001) Energy consumed by North Atlantic fisheries. In: Zeller D, Watson R, Pauly D (eds) Fisheries impacts on North Atlantic ecosystems: catch, effort, and national/regional datasets, vol 9. Fisheries Centre Research Reports, pp 12–34Google Scholar
  75. Tyedmers P, Watson R, Pauly D (2005) Fueling global fishing fleets. Ambio 34:635–638CrossRefGoogle Scholar
  76. Vázquez-Rowe I, Tyedmers P (2013) Identify the importance of the “skipper effect” within sources of measured inefficiency in fisheries through data envelopment analysis (DEA). Mar Policy 38:387–396CrossRefGoogle Scholar
  77. Vázquez-Rowe I, Moreira MT, Feijoo G (2010) Life cycle assessment of horse mackerel fisheries in Galicia (NW Spain): comparative analysis of two major fishing methods. Fish Res 106(3):517–527CrossRefGoogle Scholar
  78. Vázquez-Rowe I, Moreira MT, Feijoo G (2011a) Life cycle assessment of fresh hake fillets captured by the Galician fleet in the Northern Stock. Fish Res 1110:128–135CrossRefGoogle Scholar
  79. Vázquez-Rowe I, Moreira MT, Feijoo G (2011b) Estimating global discards and their potential reduction for the Galician fishing fleet (NW Spain). Mar Policy 35:140–147CrossRefGoogle Scholar
  80. Vázquez-Rowe I, Moreira MT, Feijoo G (2012a) Inclusion of discard assessment indicators in fisheries life cycle assessment studies. Expanding the use of fishery-specific impact categories. Int J Life Cycle Assess 17:535–549CrossRefGoogle Scholar
  81. Vázquez-Rowe I, Moreira MT, Feijoo G (2012b) Environmental assessment of frozen common octopus (Octopus vulgaris) captured by Spanish fishing vessels in the Mauritanian EEZ. Mar Policy 36(1):180–188CrossRefGoogle Scholar
  82. Vázquez-Rowe I, Hospido A, Moreira MT, Feijoo G (2012c) Best practices in life cycle assessment implementation in fisheries. Improving and broadening environmental assessment for seafood production systems. Trends Food Sci Tech 28:116–131CrossRefGoogle Scholar
  83. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2014a) Edible protein energy return on investment ratio (ep-EROI) for Spanish seafood products. Ambio 43(3):381–394CrossRefGoogle Scholar
  84. Vázquez-Rowe I, Villanueva-Rey P, Hospido A, Moreira MT, Feijoo G (2014b) Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain). Sci Total Environ 475:48–60CrossRefGoogle Scholar
  85. Vázquez-Rowe I, Reyna J, García-Torres S, Kahhat R (2015) Is climate change-centrism an optimal policy making strategy to set national electricity mixes? Appl Energ 159:108–116CrossRefGoogle Scholar
  86. Vázquez-Rowe I, Kahhat R, Quispe I, Bentín M (2016) Environmental profile of green asparagus production in a hyper-arid zone in coastal Peru. J Clean Prod 112(4):2505–2517CrossRefGoogle Scholar
  87. Villamor B, Abaunza P (2009) La anchoa del golfo de Vizcaya: un recurso pesquero en crisis. Perspectivas científicas Anuario de la Naturaleza de Cantabria 6:10–12Google Scholar
  88. Woods JS, Veltman K, Huijbregts MA, Verones F, Hertwich EG (2016) Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA). Environ Int 89:48–61CrossRefGoogle Scholar
  89. WULCA (2016) Consensual method development. Available at: http://www.Wulca-waterlca.Org/project.Html. Last accessed 17th Oct 2016
  90. Xunta de Galicia (2016) Pesca de Galicia. Last accessed: June 2016
  91. Ziegler F, Hornborg S (2014) Stock size matters more than vessel size: the fuel efficiency of Swedish demersal trawl fisheries 2002–2010. Mar Policy 44:72–81CrossRefGoogle Scholar
  92. Ziegler F, Valentinsson D (2008) Environmental life cycle assessment of Norway lobster (Nephrops novegicus) caught along the Swedish west coast by creels and conventional trawls—LCA methodology with case study. Int J Life Cycle Assess 13:487–497CrossRefGoogle Scholar
  93. Ziegler F, Winther U, Hognes E, Emanuelsson A, Sund V, Ellingsen H (2013) The carbon footprint of Norwegian seafood products on the global seafood markets. J Ind Ecol 17(1):103–116CrossRefGoogle Scholar
  94. Ziegler F, Hornborg S, Green BS, Eigaard OR, Farmery AK, Hammar L, Hartmann K, Molander S, Parker RWR, Hognes ES, Vázquez-Rowe I, Smith ADM (2016) Expanding the concept of sustainable seafood using life cycle assessment. Fish Fish 17:1073–1093CrossRefGoogle Scholar
  95. Zlatanos S, Laskaridis K (2007) Seasonal variation in the fatty acid composition of three Mediterranean fish—sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus) and picarel (Spicara smaris). Food Chem 103:725–728CrossRefGoogle Scholar
  96. Zlatanos S, Sagredos AN (1993) The fatty acids composition of some important Mediterranean fish species. Eur J Lipid Sci Tech 95(2):66–69Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jara Laso
    • 1
  • Ian Vázquez-Rowe
    • 2
  • María Margallo
    • 1
  • Rosa M. Crujeiras
    • 3
  • Ángel Irabien
    • 1
  • Rubén Aldaco
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CantabriaSantanderSpain
  2. 2.Peruvian LCA Network, Department of EngineeringPontificia Universidad Católica del PerúLimaPeru
  3. 3.Department of Statistics, Mathematical Analysis and Optimization, Faculty of MathematicsUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations