Skip to main content

Advertisement

Log in

Naturalness as a basis for incorporating marine biodiversity into life cycle assessment of seafood

  • OCEAN RESOURCES & MARINE CONSERVATION
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Methods to quantify biodiversity impacts through life cycle assessment (LCA) are evolving for both land- and marine-based production systems, although typically independently from each other. An indicator for terrestrial food production systems that may be suitable to assess marine biodiversity, and is applicable across all food production systems, is a measure of hemeroby or distance from the natural state. We explore the possibility of adapting this approach to marine systems to assess the impact of fishing on seawater column and seafloor systems.

Methods

The terrestrial hemeroby concept is adapted here for marine ecosystems. Two commercial fishery case studies are used to trial the effectiveness of hemeroby in measuring the influence exerted by fishing practices on marine biodiversity. Available inventory data are used to score areas to a hemeroby class, following a semi-quantitative scoring matrix and a seven-point scale, to determine how far the seafloor and seawater column are from their natural state. Assessment can progress to the impact assessment stage involving characterisation of the hemeroby score, to determine the Naturalness Degradation Potential (NDP) for use in calculating the Naturalness Degradation Indicator (NDI). The method builds on well-established processes for assessing fisheries within the ecosystem-based fisheries management framework and is designed to enhance assessment of fishing impacts within LCA.

Results and discussion

Australian fisheries case studies were used to demonstrate the application of this method. The naturalness of these fisheries was scored to a hemeroby level using the scoring matrix. The seafloor of the Northern Prawn Fishery and the seawater column of the South Australian Sardine Fishery were both classified as partially close to nature. Impact assessment was carried out following the process outlined for the NDI. The naturalness degradation results were highly sensitive to area calculation method and data. There was also variation in results when using annual or averaged data for catch. Results should therefore be interpreted in the context of these sensitivities.

Conclusions

Adaptation of the hemeroby concept to marine habitats may present an opportunity for more informed comparison of impacts between terrestrial and marine systems. Incorporating a measure of naturalness into assessments of food production can be useful to better understand the cost, in terms of transforming ecosystems from natural to more artificial, of meeting growing food demand. Biodiversity is a broad concept not easily captured through one indicator, and this method can complement emerging biotic LCA indicators, to provide a suite of indicators capable of capturing the full impact of fishing on marine biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AFMA (2013) Northern Prawn Fishery harvest strategy under input controls. The Australian Fisheries Management Authority. http://www.afma.gov.au/managing-our-fisheries/harvest-strategies/harvest-strategy-for-the-northern-prawn-fishery-under-input-controls/. Accessed 10 December 2013

  • Althaus F, Williams A, Schlacher TA, Kloser RJ, Green MA, Barker BA, Bax NJ, Brodie P, Schlacher-Hoenlinger MA (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol-Prog Ser 397:279–294

    Article  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Ass 7(6):339–348

    Google Scholar 

  • Bustamante RH, Dichmont CM, Ellis N, Griffiths S, Rochester WA, Burford MA, Rothlisberg PC, Dell Q, Tonks M, Lozano-Montes H, Deng R, Wassenberg T, Okey TA, A. Revill, van der Velde T, Moeseneder C, Cheers S, Donovan A, Taranto T, Salini G, Fry G, Yickell S, Pascual R, Smith F, Morello E (2010) Effects of trawling on the benthos and biodiversity: development and delivery of a spatially-explicit management framework for the Northern Prawn Fishery. Final report to the project FRDC 2005/050. CSIRO Marine and Atmospheric Research, Cleveland, Australia

  • Cashion T, Hornborg S, Ziegler F, Hognes ES, Tyedmers P (2016) Review and advancement of the marine biotic resource use metric in seafood LCAs: a case study of Norwegian salmon feed. Int J Life Cycle Assess 21:1106–1120

    Article  Google Scholar 

  • Charpy-Roubaud C, Sournia A (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar Microb Food Webs 4:31–57

    Google Scholar 

  • Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. E Environ Sci Technol 49(16):9987–9995

    Article  CAS  Google Scholar 

  • Coelho CR, Michelsen O (2014) Land use impacts on biodiversity from kiwifruit production in New Zealand assessed with global and national datasets. Int J Life Cycle Assess 19(2):285–296

    Article  Google Scholar 

  • Collie JS, Hall SJ, Kaiser MJ, Poiner IR (2000) A quantitative analysis of fishing impacts on shelf-sea benthos. J Anim Ecol 69(5):785–798

    Article  Google Scholar 

  • Consoli F (1993) Guidelines for life-cycle assessment: a code of practice. Society of Environmental Toxicology and Chemistry (SETAC)

  • Costello M, Coll M, Danovaro R, Halpin P, Ojaveer H, Miloslavich P (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS One 5(8):e12110. doi:10.1371/journal.pone.0012110

    Article  Google Scholar 

  • Curran M, de Baan L, De Schryver AM, van Zelm R, Hellweg S, Koellner T, Sonnemann G, Huijbregts MAJ (2010) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70–79

    Article  Google Scholar 

  • Dafforn KA, Glasby TM, Airoldi L, Rivero NK, Mayer-Pinto M, Johnston EL (2015) Marine urbanization: an ecological framework for designing multifunctional artificial structures. Front Ecol Environ 13(2):82–90

    Article  Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230

    Article  Google Scholar 

  • de Souza D, Flynn DB, DeClerck F, Rosenbaum R, de Melo LH, Koellner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231–1242

    Article  Google Scholar 

  • Derous S, Agardy TM, Hillewaert H, Hostens K, Jamieson G, Lieberknecht L, Mees J, Moulaert I, Olenin S, Paelinckx D, Rabaut M, Rachor E, Roff JC, Stienen EWM, Van der Wal JT, Van Lancker V, Verfaillie E, Vincx M, Weslawski JM, Degraer S (2007) A concept for biological valuation in the marine environment. Oceanologia 49(1):99–128

    Google Scholar 

  • Ellingsen H, Aanondsen SA (2006) Environmental impacts of wild caught cod and farmed salmon—a comparison with chicken. Int J Life Cycle Assess 11(1):60–65

    Article  Google Scholar 

  • Emanuelsson A, Ziegler F, Pihl L, Skold M, Sonesson U (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19(5):1156–1168

    Article  Google Scholar 

  • Emery T, Bell J, Lyle J, Hartmann K (2015) Tasmanian scalefish fishery assessment 2013/14. Institute for Marine and Antarctic Studies

  • European Union (2012) Agri-environmental indicator—landscape state and diversity. http://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_landscape_state_and_diversity. Accessed 2 April 2016 2016

  • FAO (2009) The state of world fisheries and aquaculture 2008. Rome

  • Fehrenbach H, Grahl B, Giegrich J, Busch M (2015) Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int J Life Cycle Assess 20(11):1511–1527

    Article  Google Scholar 

  • Flood M, Stobutzki I, Andrews J, Ashby C, Begg G, Fletcher R, Gardner C, Georgeson L, Hansen S, Hartmann K, Hone P, Horvat P, Maloney L, McDonald B, Moore A, Roelofs A, Sainsbury K, Saunders T, Smith T, Stewardson C, Stewart J, Wise B (2014) Status of key Australian fish stocks reports 2014. Fisheries Research and Development Corporation, Canberra

    Google Scholar 

  • Foley NS, Armstrong CW, Kahui V, Mikkelsen E, Reithe S (2012) A review of bioeconomic modelling of habitat-fisheries interactions. Int J Ecol 2012:11

    Article  Google Scholar 

  • Folke C, Carpenter SR, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Ann Rev Ecol Evol System 35:557–581

    Article  Google Scholar 

  • Georgeson L, Stobutzki I, Curtotti R (2014) Fishery status reports 2013–14. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • Grieve C, Brady DC, Polet H (2011) Best practices for managing, measuring, and mitigating the benthic impacts of fishing. Marine Stewardship Council Science Series 3:81–120

    Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952

    Article  CAS  Google Scholar 

  • Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, Lowndes JS, Rockwood RC, Selig ER, Selkoe KA, Walbridge S (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun 6. doi:10.1038/ncomms8615

  • Handley SJ, Willis TJ, Cole RG, Bradley A, Cairney DJ, Brown SN, Carter ME (2014) The importance of benchmarking habitat structure and composition for understanding the extent of fishing impacts in soft sediment ecosystems. J Sea Res 86:58–68

    Article  Google Scholar 

  • Hélias A, Langlois J, Fréon P (2014) Improvement of the characterization factor for biotic-resource depletion of fisheries. Paper presented at the Proceedings of the 9th LCA Food Conference, San Francisco, California, October 2014

  • Hilborn R, Stokes K (2010) Defining overfished stocks: have we lost the plot? Fisheries 35(3):113–120

    Article  Google Scholar 

  • Hilborn R, Fulton EA, Green BS, Hartmann K, Tracey SR, Watson RA (2015) When is a fishery sustainable? Can J Fish Aquat Sci 72:1433–1441

    Article  Google Scholar 

  • Hobday AJ, Smith A, Stobutzki IC, Bulman C, Daley R, Dambacher JM, Deng RA, Dowdney J, Fuller M, Furlani D, Griffiths SP, Johnson D, Kenyon R, Knuckey IA, Ling SD, Pitcher R, Sainsbury KJ, Sporcic M, Smith T, Turnbull C, Walker TI, Wayte SE, Webb H, Williams A, Wise BS, Zhou S (2011) Ecological risk assessment for the effects of fishing. Fish Res 108:372–384

    Article  Google Scholar 

  • Hochschorner E, Finnveden G (2003) Evaluation of two simplified life cycle assessment methods. Int J Life Cycle Assess 8(3):119–128

    Article  CAS  Google Scholar 

  • Hornborg S, Nilsson P, Valentinsson D, Ziegler F (2012) Integrated environmental assessment of fisheries management: Swedish Nephrops trawl fisheries evaluated using a life cycle approach. Mar Policy 36(6):1193–1201

    Article  Google Scholar 

  • Hornborg S, Svensson M, Nilsson P, Ziegler F (2013) By-catch impacts in fisheries: utilizing the IUCN Red List Categories for enhanced product level assessment in seafood LCAs. Environ Man 52:1239–1248

    Google Scholar 

  • Hsieh C-H, Ohman MD (2006) Biological responses to environmental forcing: the linear tracking window hypothesis. Ecology 87(8):1932–1938

    Article  Google Scholar 

  • ICES (2005) Ecosystem effects of fishing: impacts, metrics, and management strategies, vol 272. International Council for the Exploration of the Sea

  • ISO (2006) ISO 14044 environmental management—life cycle assessment—requirements and guidelines. ISO International Organisation for Standardisation, Geneva, Switzerland

    Google Scholar 

  • Johnson ML, Sandell J (2014) Advances in marine biology: marine managed areas and fisheries, vol vol. 69. Elsevier, Oxford

    Google Scholar 

  • Jolliet O, Frischknecht R, Bare J, Boulay AM, Bulle C, Fantke P, Gheewala S, Hauschild M, Itsubo N, Margni M, McKone TE, Mila Y, Canals L, Postuma L, Prado-Lopez V, Ridoutt B, Sonnemann G, Rosenbaum R, Seager T, Struijs J, van Zelm R, Vigon B, Weisbrod A (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967

    Article  Google Scholar 

  • Kaiser MJ, Clarke KR, Hinz H, Austen MCV, Somerfield PJ, Karakassis I (2006) Global analysis of response and recovery of benthic biota to fishing. Mar Ecol-Prog Ser 311:1–14

    Article  Google Scholar 

  • Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KLL, Conklin E, Gomes M, Wilcox B, Friedlander AM (2015) From reef to table: social and ecological factors affecting coral reef fisheries, artisanal seafood supply chains, and seafood security. PLoS One 10(8):e0123856

    Article  Google Scholar 

  • Lack M (2004) Ecosystem-based management in marine capture fisheries: a review of selected tools used in Australian fisheries. WWF, Sydney

  • Lam ME, Pitcher TJ (2012) The ethical dimensions of fisheries. Curr Opin Environ Sustain 4(3):364–373

    Article  Google Scholar 

  • Langlois J, Hélias A, Delgenès J-P, Steyer J-P (2011) Review on land use considerations in life cycle assessment: methodological perspectives for marine ecosystems. In: Finkbeiner M (ed) Towards life cycle sustainability management. Springer Netherlands, pp 85–96

  • Langlois J, Fréon P, Delgenes JP, Steyer JP, Hélias A (2014a) New methods for impact assessment of biotic resource depletion in LCA of fisheries: theory and application. J Clean Prod 73:63–71

    Article  Google Scholar 

  • Langlois J, Freon P, Steyer JP, Delgenes JP, Helias A (2014b) Sea-use impact category in life cycle assessment: state of the art and perspectives. Int J Life Cycle Assess 19(5):994–1006

    Article  Google Scholar 

  • Langlois J, Freon P, Steyer J-P, Helias A (2016) Sea use impact category in life cycle assessment : characterization factors for life support functions. Int J Life Cycle Assess 15:970–981

    Google Scholar 

  • Last PR, Lyne VD, Williams A, Davies CR, Butler AJ, Yearsley GK (2010) A hierarchical framework for classifying seabed biodiversity with application to planning and managing Australia’s marine biological resources. Biol Conserv 143(7):1675–1686

    Article  Google Scholar 

  • Lindegren M, Checkley DM, Ohman MD, Koslow JA, Goericke R (2016) Resilience and stability of a pelagic marine ecosystem. Proc R Soc Lond B Biol Sci 283(1822). doi:10.1098/rspb.2015.1931

  • Machado A (2004) An index of naturalness. J Nat Conserv 12(2):95–110

    Article  Google Scholar 

  • Madin EMP, Macreadie PI (2015) Incorporating carbon footprints into seafood sustainability certification and eco-labels. Mar Pol 57:178–181

    Article  Google Scholar 

  • Mayfield S, Ferguson GJ, Chick RC, Dixon CD, Noell C (2014) A reporting framework for ecosystem-based assessment of Australian prawn trawl fisheries: a Spencer Gulf prawn trawl fishery case study. Final report to the Fisheries and Research Development Corporation. SARDI, Adelaide

    Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity—proposal of a new methodology exemplified with forestry operations in Norway. I Int J Life Cycle Assess 13(1):22–31

    Google Scholar 

  • Michelsen O, Lindner JP (2015) Why include impacts on biodiversity from land use in LCIA and how to select useful indicators? Sustainability 7(5):6278–6302. doi:10.3390/su7056278

    Article  Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Washington, DC

    Google Scholar 

  • MSC (2002) MSC fishery standard: principles and criteria for sustainable fishing

  • MSC (2010) Marine Stewardship Council fisheries assessment methodology and guidance to certification bodies including default assessment tree and risk-based framework. vol version 2.1. Marine Stewardship Council

  • MSC (2015) Get certified! Your guide to the MSC fishery assessment process. Marine Stewardship Council

  • Murawski SA, Steele JH, Taylor P, Fogarty MJ, Sissenwine MP, Ford M, Suchman C (2010) Why compare marine ecosystems? ICES J Mar Sci: Journal du Conseil 67(1):1–9

    Article  Google Scholar 

  • Nilsson P, Ziegler F (2007) Spatial distribution of fishing effort in relation to seafloor habitats in the Kattegat, a GIS analysis. Aquatic Conserv 17(4):421–440

    Article  Google Scholar 

  • Patterson H, Georgeson L, Stobutzki I, Curtotti R (2015) Fishery status reports 2015. Australian Bureau of Agricultural and Resource Economics and Sciences

  • Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10(10):430

    Article  CAS  Google Scholar 

  • Pelletier N, Tyedmers P (2008) Life cycle considerations for improving sustainability assessments in seafood awareness campaigns. Environ Manag 42(5):918–931

    Article  Google Scholar 

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305(5682):346–347

    Article  CAS  Google Scholar 

  • Pinnegar JK, Engelhard GH (2007) The ‘shifting baseline’ phenomenon: a global perspective. Rev Fish Biol Fisher 18(1):1–16

    Article  Google Scholar 

  • PIRSA (2014) Ecological assessment of the South Australian sardine (Sardinops sagax) fishery. Primary industries and regions South Australia, Adelaide

  • Pitcher CR, Burridge CY, Wassenberg TJ, Hill BJ, Poiner IR (2009) A large scale BACI experiment to test the effects of prawn trawling on seabed biota in a closed area of the Great Barrier Reef Marine Park, Australia. Fish Res 99(3):168–183

    Article  Google Scholar 

  • Pitcher R, Williams A, Ellis N, Althaus F, McLeod I, Bustamante R, Kenyon R, Fuller M (2016) Implications of current spatial management measures on AFMA ERAs for habitats. FRDC Project No 2014/204

  • Ramos S, Vázquez-Rowe I, Artetxe I, Moreira M, Feijoo G, Zufía J (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int J Life Cycle Assess 16(7):599–610

    Article  Google Scholar 

  • Rocha J, Yletyinen J, Biggs R, Blenckner T, Peterson G (2015) Marine regime shifts: drivers and impacts on ecosystems services. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1659). doi:10.1098/rstb.2013.0273

  • Rosenberg AA (1996) Precautionary management reference points and management strategies. In: precautionary approach to fisheries part 2: scientific papers, vol FAO Fisheries Technical Paper. No. 350, Part 2. Food and Agriculture Organization of the United Nations, Rome, Italy

  • Rudd MA (2014) Scientists’ perspectives on global ocean research priorities. Frontiers in Marine Science 1. doi:10.3389/fmars.2014.00036

  • Rüdisser J, Tasser E, Tappeiner U (2012) Distance to nature—a new biodiversity relevant environmental indicator set at the landscape level. Ecol Indic 15(1):208–216

    Article  Google Scholar 

  • Salcido-Guevara LA, del Monte-Luna P, Arreguín-Sánchez F, Cruz-Escalona VH (2012) Potential ecosystem level effects of a shrimp trawling fishery in La Paz Bay. Mexico Open Journal of Marine Science doi. doi:10.4236/ojms.2012.23011

    Google Scholar 

  • SARDI (2016) unpublished data. SARDI Aquatic Sciences

  • SASIA (2012) Code of practice for mitigation of interactions of the South Australian Sardine Fishery with threatened, endangered, and protected species. South Australian Sardine Industry Association, Adelaide

  • Selkoe KA, Blenckner T, Caldwell MR, Crowder LB, Erickson AL, Essington TE, Estes JA, Fujita RM, Halpern BS, Hunsicker ME, Kappel CV (2015) Principles for managing marine ecosystems prone to tipping points. Ecosyst Health Sustain 1(5):1–18

    Article  Google Scholar 

  • Smith ADM, Brown CJ, Bulman CM, Fulton EA, Johnson P, Kaplan IC, Lozano-Montes H, Mackinson S, Marzloff M, Shannon LJ, Shin YJ, Tam J (2011) Impacts of fishing low-trophic level species on marine ecosystems. Science 333(6046):1147–1150

    Article  CAS  Google Scholar 

  • Souza DM, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with life cycle assessment: are we there yet? Glob Change Biol 21(1):32–47

    Article  Google Scholar 

  • Steinhardt U, Herzog F, Lausch A, Müller E, Lehmann S (1999) Hemeroby index for landscape monitoring and evaluation. In: Pykh YA, Hyatt DE, Lenz RJ (eds) Environmental indices—system analysis approach. EOLSS Publ, Oxford, pp 237–254

    Google Scholar 

  • Taelman SE, De Meester S, Schaubroeck T, Sakshaug E, Alvarenga RAF, Dewulf J (2014) Accounting for the occupation of the marine environment as a natural resource in life cycle assessment: an exergy based approach. Resour Conserv Recycl 91:1–10

    Article  Google Scholar 

  • Taelman SE, Schaubroeck T, De Meester S, Boone L, Dewulf J (2016) Accounting for land use in life cycle assessment: the value of NPP as a proxy indicator to assess land use impacts on ecosystems. Sci Total Environ 550:143–156

    Article  CAS  Google Scholar 

  • Teixeira RFM, Maia de Souza D, Curran MP, Antón A, Michelsen O, Milà i Canals L (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod 112(5):4283–4287

    Article  CAS  Google Scholar 

  • Thébaud O, Boschetti F, Jennings S, Smith ADM, Pascoe S (2015) Of sets of offsets: cumulative impacts and strategies for compensatory restoration. Ecol Model 312:114–124

    Article  Google Scholar 

  • UNEP (2014) Assessing global land use: balancing consumption with sustainable supply. A report of the working group on land and soils of the international resource panel

  • van Denderen PD, Bolam SG, Hiddink JG, Jennings S, Kenny A, Rijnsdorp AD, van Kooten T (2015) Similar effects of bottom trawling and natural disturbance on composition and function of benthic communities across habitats. Mar Ecol-Prog Ser 541:31–43

    Article  Google Scholar 

  • Vázquez-Rowe I, Moreira M, Feijoo G (2012a) Environmental assessment of frozen common octopus (Octopus vulgaris) captured by Spanish fishing vessels in the Mauritanian EEZ. Mar Pol 36(1):180–188

    Article  Google Scholar 

  • Vázquez-Rowe I, Moreira M, Feijoo G (2012b) Inclusion of discard assessment indicators in fisheries life cycle assessment studies. Expanding the use of fishery-specific impact categories. The Int J Life Cycle Assess 17(5):535–549

    Article  Google Scholar 

  • Walz U, Stein C (2014) Indicators of hemeroby for the monitoring of landscapes in Germany. J Nat Conserv 22(3):279–289

    Article  Google Scholar 

  • Ward TM, Whitten AR, Ivey AR (2015) South Australian sardine (Sardinops sagax) fishery: stock assessment report 2015. Report to PIRSA Fisheries and Aquaculture, vol Sardi Publication No. F2007/000765-5. Sardi Research Report Series No. 877. South Australian Research and Development Institute (Aquatic Sciences), Adelaide

  • Watling L, Norse EA (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12(6):1180–1197

    Article  Google Scholar 

  • Watson R, Revenga C, Kura Y (2006) Fishing gear associated with global marine catches: II. Trends in trawling and dredging. Fish Res 79(1–2):103–111

    Article  Google Scholar 

  • Williams A, Schlacher TA, Rowden AA, Althaus F, Clark MR, Bowden DA, Stewart R, Bax NJ, Consalvey M, Kloser RJ (2010) Seamount megabenthic assemblages fail to recover from trawling impacts. Marine Ecology-an Evolutionary Perspective 31:183–199

    Article  Google Scholar 

  • Woodhams J, Stobutzki I, Vieira S, Curtotti R, Ga B (2011) Fishery status reports 2010: status of fish stocks and fisheries managed by the Australian Government. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • Woodhams J, Vieira S, Stobutzki I (2012) Fishery status reports 2011. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • Woodhams J, Vieira S, Stobutzki I (2013) Fishery status reports 2012. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • Zhou S, Griffiths SP (2008) Sustainability Assessment for Fishing Effects (SAFE): a new quantitative ecological risk assessment method and its application to elasmobranch bycatch in an Australian trawl fishery. Fish Res 91(1):56–68

    Article  Google Scholar 

  • Ziegler F, Valentinsson D (2008) Environmental life cycle assessment of Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels and conventional trawls—LCA methodology with case study. Int J Life Cycle Assess 13(6):487–497

    Article  CAS  Google Scholar 

  • Ziegler F, Nilsson P, Mattsson B, Walther Y (2003) Life cycle assessment of frozen cod fillets including fishery-specific environmental impacts. Int J Life Cycle Assess 8(1):39–47

    CAS  Google Scholar 

  • Ziegler F, Emanuelsson A, Eichelsheim JL, Flysjö A, Ndiaye V, Thrane M (2011) Extended life cycle assessment of southern pink shrimp products originating in Senegalese artisanal and industrial fisheries for export to Europe. J Ind Ecol 15(4):527–538

    Article  Google Scholar 

  • Ziegler F, Groen EA, Hornborg S, Bokkers EAM, Karlsen KM, de Boer IJM (2015) Assessing broad life cycle impacts of daily onboard decision-making, annual strategic planning, and fisheries management in a northeast Atlantic trawl fishery. Int J Life Cycle Assess. doi:10.1007/s11367-015-0898-3

    Google Scholar 

  • Ziegler F, Hornborg S, Green BS, Eigaard OR, Farmery AK, Hammar L, Hartmann K, Molander S, Parker RWR, Skontorp Hognes E, Vázquez-Rowe I, Smith ADM (2016) Expanding the concept of sustainable seafood using Life Cycle Assessment. Fish Fish 17:1073–1093

    Article  Google Scholar 

  • Zimmermann F, Jørgensen C (2015) Bioeconomic consequences of fishing-induced evolution: a model predicts limited impact on net present value. Can J Fish Aquat Sci 72(4):612–624

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge participants in the expert working group for their time and input into developing this method. Members included Rich Little (CSIRO), Alan Williams (CSIRO), Jeremy Lyle (IMAS, UTAS), Caleb Gardner (IMAS, UTAS) and Timothy Emery (IMAS, UTAS). We would also like to thank Justin Hulls (IMAS, UTAS) for the GIS support. This work was supported by the Australian National Network in Marine Science (ANNIMS), the Fisheries Research and Development Corporation (FRDC) Building Economic Capability in Fisheries Project and the Marine National Adaptation Research Plan (NARP) project 2011/233, funded by the Australian Government. R.A.W. and B.G. acknowledge funding support from the Australian Research Council Discovery project support (DP140101377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna K. Farmery.

Additional information

Responsible editor: Ian Vázquez-Rowe

Electronic supplementary material

.

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmery, A.K., Jennings, S., Gardner, C. et al. Naturalness as a basis for incorporating marine biodiversity into life cycle assessment of seafood. Int J Life Cycle Assess 22, 1571–1587 (2017). https://doi.org/10.1007/s11367-017-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1274-2

Keywords

Navigation