Promoting sustainability in Mexico’s building sector via environmental product declarations



The growing phase of emerging economy countries requires the implementation of environmental assessment tools in the building sector. The use of environmental product declarations (EPDs) has risen in developed countries as one of the main tools for environmental assessment. However, at what point should developing countries follow the EPD implementation strategies used by developed countries? What are the strengths and weaknesses of EPD in the emerging economy context, and what threats and opportunities does it face within the building sector? This work aims to answer these questions by taking Mexico as a case study.


A bibliographical review was conducted to determine the key elements for EPD development in the building sector in other countries, especially those in Europe, where EPDs originated. The review also examined the experience and perspective of other countries that are starting to contemplate this type of ecolabel as an option for environmental assessment within their own building sectors, as well as industry perspectives on EPDs, especially those of small and medium-sized enterprises (SMEs). Then, Mexico’s situation in regard to these key elements was examined, with a special focus on the main stakeholders detected: government and industry. Finally, after a contrast analysis was conducted between the developed countries and Mexico, the strengths and weaknesses of EPDs in the emerging economy context and the threats and opportunities within the building sector were determined.

Results and discussion

The use of EPDs in Europe has largely followed a normative and legislative pattern. Moreover, it has been the main data source for building environmental assessment schemes, and there is a strong life cycle assessment (LCA) platform that contributes to EPD development. Furthermore, there is a European tendency toward making the use of EPDs mandatory. However, there is a very different reality in emergent economy countries. In these countries, social housing represents a major part of the vision of the building sector, so it is taken as an initial approach to EPD development. In Mexico, there is a solid legislative framework in which EPDs could be implemented, and there is a variety of environmental assessment housing programs into which EPDs could be integrated. Nevertheless, there is an institutional void that has prevented the incorporation of the life cycle approach into the national strategy of sustainability in the building sector. Moreover, SMEs might not have the technical and financial capacity to develop EPD.


This analysis has proved that EPD implementation in emerging countries mainly depends on two aspects: Firstly, it must be a shared vision of sustainability between government and industry, in which there is a correspondence between the sustainability objectives of the two parties and SMEs have the ability to contribute toward their achievement. Secondly, a solid platform of knowledge that supports LCA in the building sector is necessary, and it must involve a strong relationship between government, academia, and stakeholders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Term used by the Commission for Environmental Cooperation of North America to refer to Mexico, the USA, and Canada, under the Agreement on Environmental Cooperation of North America, which is part of the North America Free Trade Agreement.

  2. 2.

    NDP is the Objectives, Strategies and Action Lines that each new government establishes to guide their administration.

  3. 3.

    According to Ochoa et al. (2013), some of the studies used to feed the databases were those developed by Chargoy Amador et al. (2009), Chan Juárez (2009), and Valdez Medina (2010). All of them were financed by the National Commission for Housing (CONAVI).


  1. ALIDE (2015) Impulso a las viviendas sostenibles en México. Financ. climático 24–27

  2. Antón A (2004) Utilización del Análisis de Ciclo de Vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Dissertation, Universitat Politècnica de Catalunya

  3. Arena AP (1997) Análisis de Ciclo de Vida y sustentabilidad ambiental de los edificios. Experiencias en Argentina. 1–27

  4. Arena AP (1998) Un Instrumento para el Análisis y Evaluación Ambiental de Productos y Tecnologías. El Análisis de Ciclo de Vida. Adecuación para el Sector Edilicio, Mendoza

    Google Scholar 

  5. Arena AP (2007) El Análisis de Ciclo de Vida. Una metodología de evaluación de las consecuencias ambientales de la actividad humana. Mendoza, Argentina

  6. BANCOMEXT (2005) Guía para exportar productos mexicanos a la Unión Europea, 3a edición. D.F, México

    Google Scholar 

  7. Barona E, Sánchez F (2005) Características de la Vivienda de interés básica, social y económica urbana en Puebla-México. e-Gnosis 3:0–18

    Google Scholar 

  8. Borg M (2001) Environmental assessment of materials, components and buildings: building specific considerations, open-loop recycling, variations in assessment results and the usage phase of buildings. Dissertation, Kungl Tekniska Högskolan

  9. Bozyk P, Morita PK (2012) Globalization and the transformation of foreign economic policy. Ashgate Publishing Limited

  10. BRE Global (2014) The Green Guide. In: Green Guid. Accessed 28 Dec 2015

  11. Buffaloe S (2014) Maturing the market one EPD at a time. Accessed 28 Dec 2015

  12. CADIS (2014) EPD Rolan Rockwool insulation board. 1–20.

  13. CADIS (2015) Sector EPD-expandable polystyrene (EPS) insulation board. 1–17.

  14. CADIS, ADDERE (2015) EPD Latin America. In: Hub Lat. Am. Int. EPD® Syst. Accessed 30 Jul 2016

  15. Cai WG, Wu Y, Zhong Y, Ren H (2009) China building energy consumption: situation, challenges and corresponding measures. Energy Policy 37:2054–2059. doi:10.1016/j.enpol.2008.11.037

    Article  Google Scholar 

  16. CCA (2008) Edificación Sustentable en América del Norte. Oportunidades y Retos, Quebec, Canadá

    Google Scholar 

  17. CEMEX (2014) Construyendo Comunidades Urbanas Resilientes y Sostenibles. Informe de Desarrollo Sostenible 2014. Cementos Mexicanos, San Pedro Garza García

  18. Cesano D, Russell J (2013) Green Building in Latin America. 1–9

  19. CFDD (2013) Avis sur le projet d’arrêté royal fixant les exigences minimales pour les affichages environnementaux sur des produits de construction et la création d’une base de données fédérale pour les déclarations environnementales de produits. Conseil Fédéral du Dé, France

    Google Scholar 

  20. Chan Juárez M (2009) Análisis del ciclo de vida de materiales para la construcción de viviendas de interés social en el sureste mexicano. Instituto Tecnológico de Chetumal

  21. Chargoy Amador JP, Rosas Millán LA, Téllez Muradás DR (2009) Generación de inventarios para el Análisis de Ciclo de Vida de cemento, block, bovedilla, vigueta y ladrillo en la zona centro de México. Universidad de las Américas Puebla

  22. Chargoy Amador JP, Sojo Benitez A, Suppen Reynaga N, Reyes Mazzoco R (2013) Análisis de Ciclo de Vida de viviendas de interés social en México. In: Suppen Reynaga N (ed) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México, Primera. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, pp 67–74

    Google Scholar 

  23. Chevalier J, Lebert A, Schiopu N, et al. ELODIE: a tool for the environmental assessment of building. 67–77

  24. Ciccozzi E, Checkenya R, Rodriguez A (2003) Recent experiences and challenges in promoting cleaner production investments in developing countries. J Clean Prod 11:629–638

    Article  Google Scholar 

  25. CIDOC, SHF (2015) Estado Actual de la Vivienda en México 2015

  26. CMIC (2009) Medio Ambiente. Agenda e Incid. la Ind. la construcción en México 148–161

  27. CMM (2012) Evaluación de la sustentabilidad de la vivienda en México. 1–43

  28. Cole RJ (1998) Emerging trends in building environmental assessment method. Build Res Inf 26:3–16

    Article  Google Scholar 

  29. CONAVI (2007) Código de Edificación de Vivienda (2nd edition). 301–303

  30. CONAVI (2008) Criterios e indicadores para desarrollos habitacionales sustentables. 2–65

  31. CONAVI (2014) Programa Nacional de Vivienda (PNV) 2014–2018. 1–33

  32. Cooper I (1999) Which focus for building assessment methods-environmental performance or sustainability? Build Res Inf 27:321–331

    Article  Google Scholar 

  33. Cuchí A, Arcas-Abella J, Casals-Tres M, Fombella G (2014) Building a common home. Building sector. A Global Vision report, Barcelona, Spain

    Google Scholar 

  34. Davis DE (2003) Mauro F. Guillén. The limits of convergence: globalization and organizational change in Argentina, South Korea, and Spain. Econ Dev Cult Change 52:239–242. doi:10.1086/377462

  35. Argüello Méndez T del R, Argüelles León BE, Badillo González RM (2013) Análisis de Ciclo de Vida de los materiales de construcción en la edificación progresiva de la vivienda popular en Tuxtla Gutierrez, Chiapas. In: Suppen Reynaga N (ed) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México, Primera. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, pp 43–51

  36. Del Borghi A (2013) LCA and communication: environmental product declaration. Int J Life Cycle Assess 18:293–295

    Article  Google Scholar 

  37. Deringer JJ, Iyer M, Huang YJ (2004) Transferred just on paper? Why doesn ’ t the reality of transferring / adapting energy efficiency codes and standards come close to the potential? In: 2000 ACEEE Summer Study on Energy Efficiency in Buildings. Pacific Grove, CA., pp 73–86

  38. DGNB (2015) The DGNB System approach to construction products. Accessed 28 Dec 2015

  39. Ding GKC (2008) Sustainable construction—the role of environmental assessment tools. J Environ Manag 86:451–464

    Article  Google Scholar 

  40. DOGC (2006) Decreto 21/2006 Ecoeficiencia en los edificios. Departament de la Presidència, Catalunya, Spain

    Google Scholar 

  41. Dominguez Lepe JA (2013) Análisis de Ciclo de Vida de la vivienda de interés social en ciudades costeras. In: Suppen Reynaga N (ed) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México, Primera. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, pp 59–65

    Google Scholar 

  42. Douni I, Taxiarchou M, Paspaliaris I (2003) Life cycle inventory methodology in the mineral processing industries. In: International Conference on Sustainable Development Indicators in the Mineral Industries. Milos, Grece, pp 129–134

  43. EC (2016) Entrepreneurship and small and medium-sized enterprises (SMEs). In: Entrep. SMEs. Accessed 29 Jul 2016

  44. EcoBalance (2000) Life cycle assessment of nickel products. Final report prepared for Nickel Industri LCA Group

  45. ECOTEC Research & Consulting Ltd (2000) Report on SMEs and the Environment

  46. Envirodec (2016) EPD Search—Environmental Product Declarations. In: EPD search-Mexico. Accessed 7 Aug 2016

  47. Escalante García JI (2013) Impacto medioambiental de los materiales de construcción. In: Suppen Reynaga N (ed) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México, Primera. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, pp 17–26

    Google Scholar 

  48. Evander A, Neij L, Sieböck G (2004) Diffusion and development of new energy technologies: lessons learned in view of renewable energy and energy efficiency end-use projects in developing countries

  49. Fernández-Viñé MB, Gómez-Navarro T, Capuz-Rizo SF (2013) Assessment of the public administration tools for the improvement of the eco-efficiency of small and medium sized enterprises. J Clean Prod 47:265–273

    Article  Google Scholar 

  50. Frischknecht R, Wyss F, Knöpfel SB, Stolz P (2015) Life cycle assessment in the building sector: analytical tools, environmental information and labels. Int J Life Cycle Assess 20:421–425

    Article  Google Scholar 

  51. Fundación IDEA (2013) Estrategia Nacional para la Vivienda Sustentable. British Embasy in Mexico, Mexico

    Google Scholar 

  52. Galatola M, Pant R (2014) Reply to the editorial “product environmental footprint — breakthrough or breakdown for policy implementation of life cycle assessment?” Written by Prof. Finkbeiner (Int J Life Cycle Assess 19(2):266–271). Int J Life Cycle Assess 19:1356–1360. doi:10.1007/s11367-014-0740-3

  53. Gazulla C (2012) Declaraciones Ambientales de Producto: instrumento para la mejora de productos. Dissertation, Universitat Autònoma de Barcelona

  54. Gazulla C, Oregi X (2015) SOFIAS: uso de Declaraciones Ambientales de Producto (DAP) para el análisis de ciclo de vida de edificios. In: World SB 2014. pp 0–15

  55. GBCE (2015) Certificación VERDE | Accessed 28 Dec 2015

  56. Genjo K, Tanabe S, Matsumoto S et al (2005) Relationship between possession of electric appliances and electricity for lighting and others in Japanese households. Energy Build 37:259–272

    Article  Google Scholar 

  57. Gibberd J (2005) Assessing sustainable buildings in developing countries—the sustainable building assessment tool (SBAT) and the sustainable building lifecycle (SBL). In: The 2005 World Sustainable Building Conference. Tokyo, pp 1605–1612

  58. Gómez-Azpeitia G, Arvizu Piña VA, Arena Granados P (2013) Huella de Carbono de tres sistemas constructivos de muros usados en viviendas de interés social. Caso de estudio: ciudad de Colima, México. In: Suppen Reynaga N (ed) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México, Primera. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, pp 27–36

    Google Scholar 

  59. González A, Sánchez A, Domenico DS (2014) Ecómetro, collaborative work project to develop a design and measure tool of ecology in architecture. In: World SB14. pp 1–36

  60. González-Colin M, Suppen Reynaga N, Felix-Acuña R (2011) The Mexican life cycle inventory database - MEXICANIUH. In: CILCA 2011, México. Veracruz, México, pp 257–259

  61. Greenbooklive A, Assessors CF, Assessors E et al. (2015) EN 15804 EPD Verification Scheme. Accessed 28 Dec 2015

  62. Güereca LP (2013) Evaluación comparativa de los impactos ambientales de la producción de clínker con combustible fósil frente a combustible derivado de los residuos municipales. Gac. del Inst. Ing

  63. Güereca LP, Sosa RO, Gilbert HE, Reynaga NS (2015) Life cycle assessment in Mexico: overview of development and implementation. Int J Life Cycle Assess 20:311–317

    Article  Google Scholar 

  64. Hillary R (1995) Small firms and the environment—a groundwork status report, Birmingham, UK

  65. Hillary R (2004) Environmental management systems and the smaller enterprise. J Clean Prod 12:561–569

    Article  Google Scholar 

  66. Holmes J, Hudson G (2000) Am evaluation of objectives of the BREEAM scheme for offices: a local case study. In: Cutting Edge 2000. RICS Research Fundation, London

  67. Hunsager EA, Bach M, Breuer L (2014) An institutional analysis of EPD programs and a global PCR registry. Int J Life Cycle Assess 19:786–795

    Article  Google Scholar 

  68. IMF (2015) World Economic Outlook. Accessed 20 Jan 2016

  69. INE (2002) Análisis de los Mercados de los Diversos Materiales Vírgenes y Reciclados para la Producción de Envases. pp 1–46

  70. INEGI (2009) Micro, pequeña, mediana y gran empresa: estratificación de los establecimientos. Censos Económicos 2009. Instituto Nacional de Estadística y Geografía, Cd. de México

  71. INEGI (2014) Micro, pequeña, mediana y gran empresa: estratificación de los establecimientos. Censos Económicos 2014. Instituto Nacional de Estadística y Geografía, Cd. de México

  72. INFONAVIT (2014) Informe de sustentabilidad 2014. 139

  73. Ingwersen WW, Stevenson MJ (2012) Can we compare the environmental performance of this product to that one? An update on the development of product category rules and future challenges toward alignment. J Clean Prod 24:102–108

    Article  Google Scholar 

  74. Ingwersen WW, Subramanian V (2013) Guidance for product category rule development: process, outcome, and next steps. Int J Life Cycle Assess 19:532–537

    Article  Google Scholar 

  75. IPCC (2007) Mitigation of climate change: contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change

  76. Isasa M, Gazulla C et al. (2014) EnerBuiLCA: life cycle assessment for energy efficiency in buildings. In: World SB 2014. Barcelona, pp 1–32

  77. ISO (2006) ISO 14025: Environmental labels and declarations-type III environmental declarations-principles and procedures

  78. ISO (2007) ISO 21930:2007 Sustainability in building construction—environmental declaration of building products

  79. Iwaro J, Mwasha A (2010) A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy 38:7744–7755

    Article  Google Scholar 

  80. Kulczycka J (2009) Life cycle thinking in polish official documents and research: the determination of discount rate for green public procurement: editorial. Int J Life Cycle Assess 14:375–378

    Article  Google Scholar 

  81. Lasvaux S, Gantner J, Wittstock B et al (2014) Achieving consistency in life cycle assessment practice within the European construction sector: the role of the EeBGuide InfoHub. Int J Life Cycle Assess 19:1783–1793

    Article  Google Scholar 

  82. Lee B-W, Jung S-T, Kim J-H (2005) Environmental accounting guidelines and corporate cases in Korea. In: Implementing environmental management accounting: status and challenges. Springer-Verlag, Berlin/Heidelberg, pp 239–255

    Chapter  Google Scholar 

  83. Libovich A (2005) Assessing Green Buildings for Sustainable Cities. In: The 2005 World Sustainable Building Conference. Tokyo, pp 1968–1971

  84. Lucon O, Ürge-Vorsatz D, Zain Ahmed A et al (2014) Buildings. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New York, pp 671–738

    Google Scholar 

  85. METL (2015) Site réglementaire des déclarations environnementales des produits de construction, de décoration et des équipements électriques, électroniques et de génie climatique destinés à un usage dans les ouvrages de bâtiment, Ministère de l’Egalité des Teritoires. Accessed 28 Dec 2015

  86. Minkov N, Schneider L, Lehmann A, Finkbeiner M (2015) Type III environmental declaration programmes and harmonization of product category rules: status quo and practical challenges. J Clean Prod 94:235–246

    Article  Google Scholar 

  87. Monneyron F (2015) Les Certifications environnementales Internationales Pour la Conception et la Construction des Bâtiments non Résidentils. In: Des Myth. Polit

  88. Morales Mora MA, Rosa-Dominguez E, Suppen-Reynaga N, Martinez-Delgadillo SA (2012) Environmental and eco-costs life cycle assessment of an acrylonitrile process by capacity enlargement in Mexico. Process Saf Environ Prot 90:27–37

    CAS  Article  Google Scholar 

  89. Morales Mora MA, Dominguez ER, Ibarra AA et al (2014) A methodological improvement for assessing petrochemical projects through life cycle assessment and eco-costs. Int J Life Cycle Assess 19:517–531

    Article  Google Scholar 

  90. National Housing Law (2006) Ley de vivienda. Diario Oficial de la Federación (DOF). Cámara de Diputados del H. Congreso de la Unión, Mexico

  91. NRMCA (2016) Guide Specification Concrete for LEED v4 Projects. v4 Guide Spec for Concrete 10–13-14.pdf. Accessed 23 Jul 2016

  92. Ochoa R, Güereca LP, Morillon D (2013) LCA of buildings in Mexico: Advances, Limits and Catalysts. In: Vth International Conference on Life Cycle Assessment, CILCA. Mendoza, Argentina

  93. OJEU (2011) Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

  94. Ometto AR, Filho AG, Souza MP (2006) Implementation of life cycle thinking in Brazil’s environmental policy. Environ Sci Pol 9:587–592

    Article  Google Scholar 

  95. Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23:28–39

    Article  Google Scholar 

  96. Ouyang J, Hokao K (2009) Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy Build 41:711–720

    Article  Google Scholar 

  97. Passer A, Lasvaux S, Allacker K et al. (2015) Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries. Int J Life Cycle Assess 1199–1212

  98. Pe International AG, Fraunhofer Institute for Building Physics (IBP) (2015) SBS Building Sustainability. Accessed 29 Dec 2015

  99. Romero-Hernandez O (2005) Applying life cycle tools and process engineering to determine the most adequate treatment process conditions. A tool in environmental policy. Int J Life Cycle Assess 10:355–363

    CAS  Article  Google Scholar 

  100. Romero-Hernández O, Romero Hernández S, Muñoz D et al (2009) Environmental implications and market analysis of soft drink packaging systems in Mexico. A waste management approach. Int J Life Cycle Assess 14:107–113

    Article  Google Scholar 

  101. Santamouris M (2010) Energy performance of residential buildings: a practical guide for energy rating and efficiency. Taylor & Francis

  102. Schenck R (2010) A roadmap to environmental product declarations in the United States. United States of America

  103. Schenck R (2013) Status and opportunities to support product category rules in the U.S. United States of America

  104. Secretaría de Economía (2013) Norma Mexicana NMX-AA-164-SCFI-2013 Sustainable Building.-Criteria and Minimal Environmental Requirements

  105. SEMARNAT (2013) Inician Semarnat y Gran Bretaña proyecto de eco-etiquetado para productos y servicios en México. Accessed 31 Jul 2016

  106. SEMARNAT, SHF, INFONAVIT, CONAVI (2011) Vivienda Sustentable en Mexico

  107. Seo S, Tucker S, Ambrose P et al. (2006) Technical evaluation of environmental assessment rating tools, Project no: PN05.1019. For Wood Prod Res Dev Corp 1–112

  108. SEPA (2002) Towards Greener Products. Report 5296. Swedish Environmental Protection Agency, Stoclholm, Sweden

  109. Sharma VK, Kurani YS (2004) State of environmental product declarations (EPDs) in India. Int J Life Cycle Assess 9:69–69

    Article  Google Scholar 

  110. SHF (2016) Ecocasa. Casas eficientes para todos. Ecocasa/Componentes del Programa.aspx. Accessed 1 Aug 2016

  111. SOFTEC (2012) Mexican housing overview. D.F, México

    Google Scholar 

  112. Studer S, Welford R, Hills P (2006) Engaging Hong Kong businesses in environmental change: drivers and barriers. Bus Strateg Environ 15:416–431

    Article  Google Scholar 

  113. Studer S, Tsang S, Welford R, Hills P (2008) SMEs and voluntary environmental initiatives: a study of stakeholders’ perspectives in Hong Kong. J Environ Plan Manag 51:285–301

    Article  Google Scholar 

  114. Subramanian V, Ingwersen W, Hensler C, Collie H (2012) Comparing product category rules from different programs: learned outcomes towards global alignment. Int J Life Cycle Assess 17:892–903

    Article  Google Scholar 

  115. Suh S, Lee KM, Ha S (2005) Eco-efficiency for pollution prevention in small to medium-sized enterprises: a case from South Korea. J Ind Ecol 9:223–240

    CAS  Article  Google Scholar 

  116. Sunyer P, del Valle Isla AEP (2008) Quince años de Desarrollo Sostenible en México. Sripta Nov XII:1–19

  117. Suppen Reynaga N, Félix R (2003) LCA for the sustainable management of mining processes. In: Third international meeting of Mining-Camino Real de la Plata. Zacatecas, México

  118. Suppen Reynaga N, Aguillón Robles J, Arista González GJ (2013) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

  119. Suppen N, Carranza M, Huerta M, Hernández MA (2006) Environmental management and life cycle approaches in the Mexican mining industry. J Clean Prod 14:1101–1115

    Article  Google Scholar 

  120. Tilley F (1999) The gap between the environmental attitudes and the environmental behavior of small firms. Bus Strateg Environ 8:238–248

    Article  Google Scholar 

  121. UNEP (2009) Assessment of policy instruments for reducing greenhouse gas emissions from buildings

  122. UNEP (2011) Ecolabelling Mexican Footwear. Accessed 1 Aug 2016

  123. UNEP, WBCSD (1998) Cleaner production and eco-efficiency. Complementary Approaches to Sustainable Development

  124. USGBC (2013) Leed in motion: places and policies. United States of America

  125. USGBC (2014) LEED v4 User Guide. United State Green Build. Counc. 39

  126. Valdez Medina EA (2010) Análisis de ciclo de vida (LCA) y aspectos medioambientales en el diseño estructural: estudio de caso y propuestas básicas. Universidad Autónoma del Estado de México

  127. Valdez Medina EA (2013) Análisis de Ciclo de Vida y aspectos medioambientales en el diseño estructural. In: Suppen Reynaga N (ed) Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México, Primera. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, pp 37–42

    Google Scholar 

  128. Wang G, Wang Y, Zhao T (2008) Analysis of interactions among the barriers to energy saving in China. Energy Policy 36:1879–1889

    Article  Google Scholar 

  129. Waugh D (2006) Geography: an integrated approach—3rd edition and supplement set. Nelson Thornes Limited

  130. Wolf M-A, Pant R, Chomkhamsri K et al (2012) The international reference life cycle data system (ILCD) handbook. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Luxembourg

    Google Scholar 

  131. Xiao X, Songwen X, Xueyi G et al (2003) LCA case study of zinc hydro and pyro-metallurgical process in China. Int J Life Cycle Assess 8:151–155

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Víctor Alberto Arvizu-Piña.

Additional information

Responsible editor: Shabbir Gheewala

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arvizu-Piña, V.A., Cuchí Burgos, A. Promoting sustainability in Mexico’s building sector via environmental product declarations. Int J Life Cycle Assess 22, 1744–1759 (2017).

Download citation


  • Building sector
  • Emerging economy countries
  • Environmental policies
  • EPD
  • Life cycle assessment
  • Mexico