Skip to main content

Development of an electricity system model allowing dynamic and marginal approaches in LCA—tested in the French context of space heating in buildings



This study aims at accounting for the variation in electricity production, processes and related impacts depending on season (heating, cooling), day of the week (tertiary building) and hour of the day. In this context, this paper suggests two alternative methods to integrate grid-building interaction in life cycle assessment of buildings and districts.


An attributional dynamic method (AD) and a marginal dynamic method (MD) are compared with an annual average method (AA), representative of standard practice, using electric space heating as an illustrative case. The different methods are based on a dispatch model simulating electricity supply on an hourly basis, averaging historically observed climatic and economic variability. The meteorological inputs of the model are identical to those of the building energy simulation. Therefore, the environmental benefits from smart buildings and onsite renewable energy production are more accurately evaluated.

Results and discussion

Using electricity production (or supply) data for a specific past year is a common practice in building LCA. This practice is sensitive to economic and meteorological hazards. The suggested methodology is based on a proposed reference year mitigating these hazards and thus could be seen as more representative of average impacts. Depending on the chosen approach (average or marginal) to evaluate electricity supply related impacts, the carbon footprint of the electric space heating option for the studied low-energy house in France is evaluated to 61.4 to 84.9 g CO2eq kWh−1 (AA), 78.8 to 110.2 g CO2eq kWh−1 (AD) and 765.1 to 928.7 g CO2eq kWh−1 (MD). Compared to wood and gas boiler, 22–107 and 218–284 g CO2eq kWh−1 respectively, the ranking between the different technical options depends on the chosen approach. Uncertainty analysis does not undermine the interpretation of the results.


The proposed electricity system model allows a more precise and representative evaluation of electricity supply related impacts in LCA compared to standard practices. Two alternative methods are suggested corresponding to attributional and consequential LCA. The approach has to be chosen in line with the assessment objectives (e.g. certification, ecodesign). Prospective assessment integrating long-term evolution of the electric system and influence of global warming on buildings behaviour are identified as relevant future research subjects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  • Amor MB, Gaudreault C, Pineau P-O, Samson R (2014) Implications of integrating electricity supply dynamics into life cycle assessment: a case study of renewable distributed generation. Renew Energy 69:410–419

    Article  Google Scholar 

  • Assoumou E (2006) Modélisation MARKAL pour la planification énergétique long terme dans le contexte français (THESE). École Nationale Supérieure des Mines de Paris

  • Beloin-Saint-Pierre D (2012) Vers une caractérisation spatiotemporelle pour l’analyse du cycle de vie. Ecole Nationale Supérieure des Mines de Paris

  • Beloin-Saint-Pierre D, Levasseur A, Margni M, Blanc I (2016) Implementing a dynamic life cycle assessment methodology with a case study on domestic hot water production: implementing a dynamic LCA methodology. J Ind Ecol. doi:10.1111/jiec.12499

    Google Scholar 

  • Blengini GA, Di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build 42:869–880

    Article  Google Scholar 

  • Blom I, Itard L, Meijer A (2011) Environmental impact of building-related and user-related energy consumption in dwellings. Build Environ 46:1657–1669. doi:10.1016/j.buildenv.2011.02.002

  • Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew. Sustain Energy Rev 29:394–416

    Article  Google Scholar 

  • CEA (2012) CEA - Énergie - Efficacité et sobriété énergétique dans le bâtiment - Les recherches du CEA sur les bâtiments intelligents [WWW Document]. URL (accessed 4.30.14)

  • CGDD (2013) Chiffres&Statistiques - Tableau de bord éolien-photovoltaïque [WWW Document]. URL (accessed 6.3.15)

  • Chouquet J (2007) Development of a method for building life cycle analysis at an early design phase - implementation in a tool - sensitivity and uncertainty of such a method in comparison to detailed LCA software (Thèse de doctorat). Université de Karlsruhe, Karlsruhe

    Google Scholar 

  • Citherlet S, Defaux T (2007) Energy and environmental comparison of three variants of a family house during its whole life span. Build Environ 42:591–598. doi:10.1016/j.buildenv.2005.09.025

  • Collinge WO, Liao L, Xu H, Saunders CL, Bilec MM, Landis AE, Jones AK, Schaefer LA (2011) Enabling dynamic life cycle assessment of buildings with wireless sensor networks, in: 2011 I.E. International Symposium on Sustainable Systems and Technology (ISSST). Presented at the 2011 I.E. International Symposium on Sustainable Systems and Technology (ISSST), pp 1–6

  • Collinge WO, Landis AE, Jones AK, Schaefer LA, Bilec MM (2013) Dynamic life cycle assessment: framework and application to an institutional building. Int J Life Cycle Assess 18:538–552

    CAS  Article  Google Scholar 

  • Connolly D, Lund H, Mathiesen BV, Leahy M (2010) A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energy 87:1059–1082

    Article  Google Scholar 

  • Crawford RH, Treloar GJ, Fuller RJ, Bazilian M (2006) Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit. Renew Sust Energ Rev 10:559–575

    CAS  Article  Google Scholar 

  • Curran MA, Mann M, Norris G (2005) The international workshop on electricity data for life cycle inventories. J Clean Prod 13:853–862

    Article  Google Scholar 

  • Dones R, Ménard M, Gantner U (1998) Choice of electricity-mix for different LCA applications, in: 6 Th LCA Case Studies Symposium SETAC-Europe. Belgium

  • Earles J, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453

    Article  Google Scholar 

  • EEA (2010) Final electricity consumption by sector, EU-27—European Environment Agency [WWW Document]. URL (accessed 11.6.16)

  • Ekvall T, Weidema B (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9:161–171

    Article  Google Scholar 

  • Erlandsson M, Borg M (2003) Generic LCA-methodology applicable for buildings, constructions and operation services—today practice and development needs. Build Environ 38:919–938

    Article  Google Scholar 

  • Favre B, Peuportier B (2014) Application of dynamic programming to study load shifting in buildings. Energy Build 82:57–64

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Fouquet M, Levasseur A, Margni M, et al (2015) Methodological challenges and developments in LCA of low energy buildings: Application to biogenic carbon and global warming assessment. Build Environ 90:51–59. doi:10.1016/j.buildenv.2015.03.022

  • Frischknecht R, Stucki M (2010) Scope-dependent modelling of electricity supply in life cycle assessments. Int J Life Cycle Assess 15:806–816

    CAS  Article  Google Scholar 

  • Guiavarch A, Peuportier B (2006) Photovoltaic collectors efficiency according to their integration in buildings. Sol Energy 80:65–77

    CAS  Article  Google Scholar 

  • Halvgaard R, Poulsen NK, Madsen H, Jorgensen JB (2012) Economic Model Predictive Control for building climate control in a Smart Grid. In: Innovative Smart Grid Technologies (ISGT), 2012 I.E. PES. Presented at the Innovative Smart Grid Technologies (ISGT), 2012 I.E. PES, pp 1–6

  • Herfray G (2011) Contribution à l’évaluation des impacts environnementaux des quartiers. École Nationale Supérieure des Mines de Paris

  • IEA (2011) Climate and Electricity annual 2011, Data and analyses.

  • INSEE (2012) Consommation finale d’électricité par secteur en 2012

  • Itten R, Frischknecht R, Stucki M (2012) Life cycle inventories of electricity mixes and grid. ESU-Serv. Ltd, Uster

    Google Scholar 

  • Keesman KJ (2011) System identification: an introduction. Springer Science & Business Media

  • Kohler N (1986) Analyse énergétique de la construction de l’utilisation et de la démolition de bâtiments. Ecole Polytechnique Fédérale de Lausanne, Lausanne. doi:10.5075/epfl-thesis-623

  • Kohler N, Wagnwe A, Luetzkendorf T, König H (2005) Life cycle assessment of passive buildings with LEGEP-a LCA-tool from Germany. In: World Sustainable Building Conference, Tokyo

  • Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44:3169–3174

    CAS  Article  Google Scholar 

  • Lotteau M, Loubet P, Pousse M, Dufrasnes E, Sonnemann G (2015) Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. Build Environ 93 Part 2:165–178

    Article  Google Scholar 

  • Lund H (2007) EnergyPLAN-advanced energy systems analysis computer model-documentation version 7.0-

  • Lund H, Eidorff S (1980) Selection methods for production of test reference years. App R Dogniaux Final Rep. Short Version Rep. EUR 7306, 1

  • Lund H, Mathiesen B, Christensen P, Schmidt J (2010) Energy system analysis of marginal electricity supply in consequential LCA. Int J Life Cycle Assess 15:260–271. doi:10.1007/s11367-010-0164-7

  • Mak J, Anink D, Knapen M, Kortman J, Van Ewijk H (1997) ECO-QUANTUM development of LCA based tools for buildings. Presented at the Buildings and the environment. International conference, pp 49–58

  • Malidin AS, Kayser-Bril C, Maizi N, Assoumou E, Boutin V, Mazauric V (2008) Assessing the impact of smart building techniques: a prospective study for France. In: IEEE Energy 2030 Conference, 2008. ENERGY 2008. Presented at the IEEE Energy 2030 Conference, 2008. ENERGY 2008, pp 1–7

  • Malisani P, Favre B, Thiers S, Peuportier B, Chaplais F, Petit N (2011) Investigating the ability of various buildings in handling load shiftings. In: 2011 I.E. Power Engineering and Automation Conference (PEAM). Presented at the 2011 I.E. Power Engineering and Automation Conference (PEAM), pp 393–397

  • Mathiesen BV, Münster M, Fruergaard T (2009) Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments. J Clean Prod 17:1331–1338

    Article  Google Scholar 

  • Messagie M, Mertens J, Oliveira L, Rangaraju S, Sanfelix J, Coosemans T, Van Mierlo J, Macharis C (2014) The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Appl Energy 134:469–476

    CAS  Article  Google Scholar 

  • Nordby AS, Shea AD (2013) Building materials in the operational phase. J Ind Ecol 17:763–776

    CAS  Google Scholar 

  • Olkkonen V, Syri S (2016) Spatial and temporal variations of marginal electricity generation: the case of the Finnish, Nordic, and European energy systems up to 2030. J Clean Prod. doi:10.1016/j.jclepro.2016.03.112

    Google Scholar 

  • Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23:28–39

    Article  Google Scholar 

  • Özkizilkaya Ö (2014) Thermosensibilité de la demande électrique: identification de la part non linéaire par couplage d’une modélisation bottom-up et de l’approche bayésienne (phdthesis). Ecole Nationale Supérieure des Mines de Paris

  • Padey P, Blanc I, Le Boulch D, Xiusheng Z (2012) A simplified life cycle approach for assessing greenhouse gas emissions of wind electricity. J Ind Ecol 16:S28–S38

    CAS  Article  Google Scholar 

  • Peuportier B, Blanc Sommereux I (1990) Simulation tool with its expert interface for the thermal design of multizone buildings. Int J Sol Energy 8:109–120

    Article  Google Scholar 

  • Peuportier B, Herfray G (2012) Evaluation of electricity related impacts using a dynamic LCA model. Presented at the International Symposium Life Cycle Assessment and Construction, Nantes, juillet 2012

  • Peuportier B, Kohler K, Boonstra C (1997) European project REGENER, life cycle analysis of buildings. In: 2nd International Conference “Buildings and the Environment,” Paris France

  • Peuportier B, Kellenberger D, Anink D, Mötzl H, Anderson J, Vares S, Chevalier J, König H (2004) Inter-comparison and benchmarking of LCA-based environmental assessment and design tools. Presented at the Sustainable Building 2004 Conference, Varsovie, Octobre 2004

  • Peuportier B, Thiers S, Guiavarch A (2013) Eco-design of buildings using thermal simulation and life cycle assessment. J Clean Prod 39:73–78

    Article  Google Scholar 

  • Rabl A, Rialhe A (1992) Energy signature models for commercial buildings: test with measured data and interpretation. Energy Build 19:143–154

    Article  Google Scholar 

  • Raichur V, Callaway DS, Skerlos SJ (2015) Estimating emissions from electricity generation using electricity dispatch models: the importance of system operating constraints. J Ind Ecol 20:42–53

    Article  Google Scholar 

  • Richardson DB (2013) Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration. Renew. Sustain Energy Rev 19:247–254

    Article  Google Scholar 

  • Roux C, Schalbart P, Peuportier B (2016) Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house. J Clean Prod 113:532–540

    Article  Google Scholar 

  • RTE (2012) Bilan prévisionnel 2012 de l’équilibre offre-demande : la sécurité de l’alimentation électrique assurée jusqu’en 2015 [WWW Document]. URL (accessed 11.26.12)

  • RTE (2013) Actualisation du bilan prévisionnel de l’équilibre offre-demande d’électricité en France

  • RTE (2014) Bilan prévisionnel de l’équilibre offre-demande d’électricité en France

  • Sartori I, Hestnes AG (2007) Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy Build 39:249–257

    Article  Google Scholar 

  • SER (2009) L’hydroélectricité : les chiffres en Frances et dans le monde.

  • SER (2012) Le fonctionnement d’une éolienne [WWW Document]. Synd. Energ. Renouvelables SER. URL (accessed 6.6.14)

  • Shah VP, Ries RJ (2009) A characterization model with spatial and temporal resolution for life cycle impact assessment of photochemical precursors in the United States. Int J Life Cycle Assess 14:313–327

    CAS  Article  Google Scholar 

  • Sharma A, Saxena A, Sethi M, Shree V, Varun (2011) Life cycle assessment of buildings: a review. Renew. Sustain. Energy Rev 15:871–875

    Google Scholar 

  • Spitz C, Mora L, Wurtz E, Jay A (2012) Practical application of uncertainty analysis and sensitivity analysis on an experimental house. Energy Build 55:459–470

    Article  Google Scholar 

  • Stasinopoulos P, Compston P, Newell B, Jones HM (2012) A system dynamics approach in LCA to account for temporal effects—a consequential energy LCI of car body-in-whites. Int J Life Cycle Assess 17:199–207

    CAS  Article  Google Scholar 

  • Tiruta-Barna L, Pigné Y, Navarrete Gutiérrez T, Benetto E (2016) Framework and computational tool for the consideration of time dependency in life cycle inventory: proof of concept. J Clean Prod 116:198–206

    Article  Google Scholar 

  • Treyer K, Bauer C (2013) Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—part I: electricity generation. Int J Life Cycle Assess 21:1236–1254

    Article  Google Scholar 

  • Treyer K, Bauer C (2014) Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—part II: electricity markets. Int J Life Cycle Assess 21:1255–1268

    Article  Google Scholar 

  • Vandromme N, Dandres T, Samson R (2013) Consequential modeling of energy consumption of a group of servers generating a cloud computing

  • Vuillecard C, Hubert CE, Contreau R, Mazzenga A, Stabat P, Adnot J (2011) Small scale impact of gas technologies on electric load management—μCHP & hybrid heat pump. Energy 36:2912–2923

    Article  Google Scholar 

  • Weidema PB, Ekvall T, Heijungs R (2009) Guidelines for application of deepened and broadened LCA. Deliv. D18 Work Package 5, 17

  • Zabalza Bribián I, Aranda Usón A, Scarpellini S (2009) Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 44:2510–2520

    Article  Google Scholar 

Download references


This work was performed in the frame of the research Chair ParisTech Vinci ‘Ecodesign of buildings and infrastructure’. The authors acknowledge helpful insights from RTE experts regarding the management of an electrical power system.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Charlotte Roux.

Additional information

Responsible editor: Alexander Passer

Electronic supplementary material


(DOCX 1782 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roux, C., Schalbart, P. & Peuportier, B. Development of an electricity system model allowing dynamic and marginal approaches in LCA—tested in the French context of space heating in buildings. Int J Life Cycle Assess 22, 1177–1190 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Building ecodesign
  • Consequential LCA
  • Dynamic LCA
  • Electricity mix
  • Marginal technology
  • Space heating