Skip to main content

Advertisement

Log in

Inclusion of uncertainty in the LCA comparison of different cherry tomato production scenarios

  • UNCERTAINTIES IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Knowledge regarding environmental impacts of agricultural systems is required. Consideration of uncertainty in life cycle assessment (LCA) provides additional scientific information for decision making. The aims of this study were to compare the environmental impacts of different growing cherry tomato cultivation scenarios under Mediterranean conditions and to assess the uncertainty associated to the different agricultural production scenarios.

Materials and methods

The burdens associated to cherry tomato production were calculated and evaluated by the LCA methodology. The functional unit (FU) chosen for this study was the mass unit of 1 t of commercial loose cherry tomatoes. This study included the quantitative uncertainty analysis through Monte Carlo simulation. Three scenarios were considered: greenhouse (GH), screenhouse (SH), and open field (OF). The flows and processes of the product scenario were structured in several sections: structure, auxiliary equipment, fertilizers, crop management, pesticides, and waste management. Six midpoint impact categories were selected for their relevance: climate change, terrestrial acidification, marine eutrophication, metal depletion, and fossil depletion using the impact evaluation method Recipe Midpoint and ecotoxicity using USEtox.

Results and discussion

The structure, auxiliary equipment, and fertilizers produced the largest environmental impacts in cherry tomato production. The greatest impact in these stages was found in the manufacture and drawing of the steel structures, manufacture of perlite, the amount of HDPE plastics used, and the electricity consumed by the irrigation system and the manufacture and application of fertilizers. GH was the cropping scenario with the largest environmental impact in most categories (varying from 18 and 37% higher than SH and OF, respectively, in metal depletion, to 96% higher than SH and OF, in eutrophication). OF showed the highest uncertainty in ecotoxicity, with a bandwidth of 60 CTUe and a probability of 100 and 99.4% to be higher than GH and SH, respectively.

Conclusions

The LCA was used to improve the identification and evaluation of the environmental burdens for cherry tomato production in the Mediterranean area. This study demonstrates the significance of conducting uncertainty analyses for comparative LCAs used in comparative relative product environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antón A (2004) Utilización del análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Doctoral Thesis, Universitat Politecnica de Catalunya, Barcelona (in Spanish)

  • Antón A, Montero JI, Muñoz P, Castells F (2005) LCA and tomato production in Mediterranean greenhouses. Int J Agric Resour govern Ecol 4(2):102–112

    Google Scholar 

  • Antón A (2008) Sustainable management in horticulture: a life cycle perspective. In: The 8th International Conference on EcoBalance, Tokyo (Japan). Available from http://www.komatta-chan.jp/eco/index2.htm

  • Antón A, Torrellas M, Raya V, Montero JI (2014a) Modelling the amount of materials to improve inventory datasets of greenhouse infrastructures. Int J Life Cycle Assess 19:29–41

    Article  Google Scholar 

  • Antón A, Torrellas M, Nuñez M, Sevigne E, Amores MJ, Muñoz P, Montero JI (2014b) Improvement of agricultural life cycle assessment studies through spatial differentiation and new impact categories: case study on greenhouse tomato production. Environ Sci Technol 48(16):9454–9462

    Article  Google Scholar 

  • Audsley E, Alber S, Clift R, Cowell S, Crettaz P, Gaillard G, Hausheer J, Jolliet O, Kleijn R, Mortensen B, Pearce D, Roger E, Teulon H, Weidema B, van Zeijts H (1997) Harmonisation of environmental life cycle assessment for agriculture. Final report concerted action AIR3-CT94–2028. European Commission DG VI Agriculture, UK

    Google Scholar 

  • Audsley E (2000) Systematic procedures for calculating agricultural performance data for comparing systems. In: Weidema B, Meeusen M (eds) Agricultural data for life cycle assessments, vol 1. Agricultural Economics Research Institute, The Haugue, pp 35–46

    Google Scholar 

  • Audsley E, Stacey KF, Parsons D, Williams AG (2009) Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. Cranfield University

  • Berthoud A, Maupu P, Huet C, Poupart A (2011) Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): a case study of wheat using French agricultural practices databases and USEtox model. Int J Life Cycle Assess 16(8):841–847

    Article  CAS  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5(6):349–357

    Article  CAS  Google Scholar 

  • Castellano S, Scarascia-Mugnozza G, Russo G, Briassolulis D, Mistriotis A, Hemming S, Waaijenberg D (2008) Plastic net in agriculture: a general review of types and applications. Appl Enf Agric 24(6):799–808

    Article  Google Scholar 

  • Castilla N (2013) Greenhouse technology and management. 2ªEdition. CABI, Oxford site. UK, p. 327

    Book  Google Scholar 

  • CEN EN 13031 (2001) Greenhouses: Design and construction. Part 1: Commercial production greenhouses, European Committee for Standardization

  • Cowell SJ (1998) Environmental life cycle assessment of agricultural systems: Integration into Decision-Making. PhD tesis, University of Surrey, Guildford

  • EC. Directive 2009/128/EC of the European Parliament and of the Council of 21 October (2009) Establishing a framework for community action to achieve the sustainable use of pesticides. European Commission, Brussels

    Google Scholar 

  • Ecoinvent (2010) Ecoinvent Data v2.2. Swiss Centre for Life Cycle Inventories

  • EFSA-PPR (2009) EFSA-PPR project on “Data-collection of existing data on protected crop systems (greenhouses and crops grown under cover) in Southern European EU Member States”. Agricultural University of Athens. Available from http://www.efsa.europa.eu

  • Fantke P, Friedrich R, Jolliet O (2012) Health impact and damage cost assessment of in Europe. Environ Int 49:9–17

    Article  CAS  Google Scholar 

  • FAOSTAT (2013) The FAO (Food and Agriculture Organization of the United Nations). Statistical Database. http://faostat.fao.org

  • Freni G, Mannina G (2012) Uncertainty estimation of a complex water quality model: the influence of box-cox transformation on Bayesian approaches and comparison with a non-Bayesian method. Phys Chem Earth 42:31–41

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzger G, Spielmann M, Wernet G (2007) Overview and methodology. Ecoinvent report 1(v3). Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

    Google Scholar 

  • Gallardo M, Thompson RB, Rodríguez F, Fernández MD (2009) Simulation of transpiration, drainage, N uptake, nitrate leaching and N uptake concentration in tomato grown in open substrate. Agr Water Manage 96:1773–1784

    Article  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R, ReCiPe (2009) A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, PRé Consultants, Amersfoort, Netherlands; CML, University of Leiden, Netherlands; RUN, Radboud University Nijmegen Netherlands; RIVM, Bilthoven, Netherlands

  • Green MB (1987) Energy in pesticide manufacture, distribution and use. In: Helsel ZR (ed) Energy in plant nutrition and pest control, chapter 7, pp 165–177

  • Gregory JR, Montalbo TM, Kirchain RE (2013) Analyzing uncertainty in a comparative life cycle assessment of hand drying systems. Int J Life Cycle Assess 18:1605–1617

    Article  CAS  Google Scholar 

  • Hayashi K, Makino N, Shobatake K, Hokazono S (2012) Influence of scenario uncertainty in agricultural inputs on LCA results for agricultural production systems. In: 8th Int. Conference on LCA in the Agri-Food Sector, pp 204–209

  • ISO-14040 (2006) Environmental management—life cycle assessment—principles and framework. International Organization for Standardization ISO, Geneva

    Google Scholar 

  • ISO-14044 (2006) Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization ISO, Geneva

    Google Scholar 

  • Leionen I, Williams A, Kyriazakis I (2012) Quantifying environmental impacts and their uncertainties for UK broiler and egg production systems. In: 8th Int. Conference on LCA in the Agri-Food Sector, pp 198–203

  • MAGRAMA (2014) Anuario de Estadística Agroalimentario del Ministerio de Agricultura, Alimentación y Medio Ambiente, pp 626–628 (in Spanish)

  • Martínez-Blanco J, Muñoz P, Antón A, Rieradevall J (2011) Assessment of tomato Mediterranean production in open-field and standard multi-tunnel greenhouse, with compost or mineral fertilizers, from an agricultural and environmental standpoint. J Clean Prod 19:985–997

    Article  Google Scholar 

  • Nemecek T, Erzinger S (2005) Modelling representative life cycle inventories for Swiss arable crops. Int J Life Cycle Assess 10(1):1–9

    Article  Google Scholar 

  • Niero M, Manzardo A, Toniolo S, Zuliani F, Scipione A (2012) Uncertainty analysis in a comparative LCA between organic and conventional farming of soybean and barley. In: 8th Int. Conference on LCA in the Agri-Food Sector, pp 931–932

  • Núñez M, Martínez J, Muñoz P, Antón A, Rieradevall J (2008) Estudios preliminares de evaluación de impacto ambiental global en la aplicación de compost como fertilizante en cultivos de tomate al aire libre y en invernadero. I Jornadas de la red española de compostaje, Barcelona (in Spanish)

    Google Scholar 

  • Pérez Parra JJ (2002) Ventilación natural de invernaderos tipo parral. PhD Dissertation, Universidad de Córdoba, Escuela Técnica Superior de Ingenieros Agrónomo y Montes (in Spanish)

  • Perrin A, Basset-Mens C, Gabrielle B (2014) Life cycle assessment of vegetable products: a review focusing on cropping systems diversity and the estimation of field emissions. Int J Life Cycle Assess 19(6):1247–1263

    Article  CAS  Google Scholar 

  • Romero-Gámez M, Antón A, Soriano T, Suárez-Rey EM, Castilla N (2009) Environmental impact of greenbean cultivation: comparison of screen greenhouses vs. open field. J of Food Agric Environ 7(3&4):132–138

    Google Scholar 

  • Romero-Gámez M, Suárez-Rey EM, Antón A, Castilla N, Soriano T (2012) Environmental impact of screenhouse and open-field cultivation using a life cycle analysis: the case study of green bean production. J Clean Prod 28:63–69

    Article  Google Scholar 

  • Romero-Gámez M, Audsley E, Suárez-Rey EM (2014) Life cycle assessment of cultivating lettuce and escarole in Spain. J Clean Prod 73:193–203

    Article  Google Scholar 

  • Rosenbaum R, Bachmann TM, Swirsky Gold L, Huijbregts MA, Jolliet O, Juraske R, Koehler A, Henrik F, Larsen HF, Matthew MacLeod M, Manuele Margni M, McKone TE, Payet J, Schuhmacher M, Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  • Rosenbaum R, Anton A, Bengoa X, Bjørn A, Brain R, Bulle C, Cosme N, Dijkman TJ, Fantke P, Felix M, Geoghegan TS, Gottesbüren B, Hammer C, Humbert S, Jolliet O, Juraske R, Lewis F, Maxime D, Nemecek T, Payet J, Räsänen K, Roux P, Schau EM, Sourisseau S, van Zelm R, von Streit B, Wallman M (2015) The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int J Life Cycle Assess 20:765–776

    Article  CAS  Google Scholar 

  • Stanhill G (1980) The energy cost of protected cropping: a comparison of six systems of tomato production. J Agric Eng Res 25:145–154

    Article  Google Scholar 

  • Torrellas M, Antón A, Ruijs M, García Victoria N, Stanghellini C, Montero JI (2012a) Environmental and economic assessment of protected crops in four European scenarios. J Clean Prod 28:45–55

    Article  Google Scholar 

  • Torrellas M, Antón A, López JC, Baeza EJ, Pérez-Parra J, Muñoz P, Montero JI (2012b) LCA of a tomato crop in a multi-tunnel greenhouse in Almería. Int J Life Cycle Assess 17:863–875

    Article  CAS  Google Scholar 

  • Vigne M, Faverdin P, Peyraud JL (2012) Energy analysis of agricultural systems: uncertainty associated with energy coefficients non-adapted to local conditions. In: 8th Int. Conference on LCA in the Agri-Food Sector, pp 929–930

  • Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Vadenbo CO, Wernet G (2013) Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent report 1(v3). The ecoinvent Centre, St. Gallen

    Google Scholar 

Download references

Acknowledgements

This research was funded by the “Instituto Nacional de Investigación Agraria (INIA)” through the project RTA2009-00005-00-00, IFAPA and EU (FEDER) funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Romero-Gámez.

Additional information

Responsible editor: Andreas Ciroth

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Gámez, M., Antón, A., Leyva, R. et al. Inclusion of uncertainty in the LCA comparison of different cherry tomato production scenarios. Int J Life Cycle Assess 22, 798–811 (2017). https://doi.org/10.1007/s11367-016-1225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1225-3

Keywords

Navigation