Social life cycle assessment of first and second-generation ethanol production technologies in Brazil

  • Alexandre Souza
  • Marcos Djun Barbosa Watanabe
  • Otavio Cavalett
  • Cassia Maria Lie Ugaya
  • Antonio Bonomi
SOCIAL LCA IN PROGRESS

Abstract

Purpose

The main goal of this study is to suggest quantitative social metrics to evaluate different sugarcane biorefinery systems in Brazil by exploring a novel hybrid approach integrating social life cycle assessment and input-output analysis.

Methods

Social life cycle assessment is the main methodology for evaluating social aspects based on a life-cycle approach. Using this framework, a hybrid model integrating social life cycle assessment and input-output analysis was introduced to evaluate different social effects of biorefinery scenarios considering workers as the stakeholder category. Job creation, occupational accidents, wage profile, education profile, and gender profile were selected as the main inventory indicators. A case study of three scenarios considering variations in agricultural and industrial technologies (including sugarcane straw recovery and second-generation ethanol production, for instance) was carried out for evaluating present first-generation (1G-basic, 1G-optimized) and future first- and second-generation ethanol production (1G2G).

Results and discussion

The 1G-basic scenario leads to higher job creation levels over the supply chain mainly because of the influence of agricultural stage whose workers are mostly employed in sugarcane manual operations. On the other hand, 1G-optimized and 1G2G present supply chains are more reliant on the manufacturing, trade, and services sectors whose workers are associated with a lower level of occupational accidents, higher average wages, higher education level, and more participation of women in the work force.

Conclusions

The use of a novel hybrid approach integrating social life cycle assessment (SLCA) and input-output analysis (IOA) was useful to quantitatively distinguish the social effects over different present and future sugarcane biorefinery supply chains. As a consequence, this approach is very useful to support decision-making processes aiming to improve the sustainability of sugarcane biorefineries taking social aspects into account.

Keywords

Ethanol Input-output analysis Life cycle assessment Social assessment Sugarcane 

Notes

Acknowledgments

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (project 453921/2014-0), and Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (projects 2012/15.359-1 and 2010/17139-3) for the financial support.

References

  1. Benoit-Norris C (2014) Data for social LCA. Int J Life Cycle Assess 19(2):261–265CrossRefGoogle Scholar
  2. Benoit-Norris C, Cavan DA, Norris G (2012) Identifying social impacts in product supply chains: overview and application on the Social Hotspot Database. Sustainability 4:1946–1965CrossRefGoogle Scholar
  3. Bocoum I, Macombe C (2015) Anticipating impacts on health based on changes in income inequality caused by life cycles. J Life Cycle Assess 20:405–417CrossRefGoogle Scholar
  4. Bonomi A, Mariano AP, Jesus CDF et al. (2012) The Virtual Sugarcane Biorefinery (VSB): 2011 Report. Campinas, São Paulo: Brazilian Bioethanol Science and Technology Laboratory (CTBE), Technological Assessment Program (PAT), Internal Report, 2012. Available at: http://goo.gl/x1Ach. Accessed 07.16.2014
  5. Cardoso TF, Cavalett O, Chagas MF et al (2013) Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. Sci Agric 70(5):353–360CrossRefGoogle Scholar
  6. Cavalett O, Junqueira TL, Dias MOS et al (2012) Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol Environ 14(3):399–410CrossRefGoogle Scholar
  7. Dias MOS, Cunha MP, Jesus CDF et al (2011) Second generation ethanol in Brazil: can it compete with electricity production? Bioresour Technol 102(19):8964–8971CrossRefGoogle Scholar
  8. Guilhoto JJM, Sesso Filho UA (2010) Estimação da matriz insumo-produto utilizando dados preliminares das contas nacionais: aplicação e análise de indicadores econômicos para o Brasil em 2005 (input-output table estimation from preliminary data on the system of national accounts: application and assessment of economic indicators for Brazil in 2005). Economia e Tecnologia 6(23):53–62Google Scholar
  9. Guilhoto JJM, Sesso Filho UA (2005) Estimação da matriz insumo-produto a partir de dados preliminares das contas nacionais (input-output table estimation from preliminary data on the system of national accounts). Economia Aplicada 9(2):277–299Google Scholar
  10. Hendrickson C, Lave L, Matthews HS (2006) Environmental life cycle of goods and services: an input-output approach. RFF Press, Washington DCGoogle Scholar
  11. IBGE (2015) System of National Accounts. Brazilian Institute of Geography and Statistics (IBGE). http://www.ibge.gov.br/home/estatistica/economia/matrizinsumo_produto/default.shtm. Accessed 14 May 2015
  12. Jonker J, Van der Hilst F, Junginger HM et al (2015) Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Appl Energ 147:593–610CrossRefGoogle Scholar
  13. Jørgensen A, Le Bocq A, Nazarkina L et al (2008) Methodologies for social life cycle assessment. Int J Life Cycle Assess 13(2):96–103CrossRefGoogle Scholar
  14. Jørgensen A (2013) Social LCA - a way ahead? Int J Life Cycle Assess 18:296–299CrossRefGoogle Scholar
  15. Macombe C, Loeillet D (2013) Social life cycle assessment, for who and why? In: Macombe C (ed) Social LCAs: socio-economic effects in value chains. Cirad, Montpellier, pp 35–52Google Scholar
  16. Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions. Cambridge University Press, New YorkCrossRefGoogle Scholar
  17. MPS (2015) Anuário Estatístico da Previdência Social – AEAT. Ministry of Social Security. http://www.previdencia.gov.br/estatisticas/. Accessed 20 Jan 2015
  18. MTE (2015) Base de dados on-line. Programa de Disseminação de Estatísticas do trabalho—PDET: Ministry of Labor and Employment (MTE). http://bi.mte.gov.br/bgcaged/login.php. Accessed 20 Jan 2015
  19. Norris GA (2006) Social impacts in product life cycles: towards life cycle attribute assessment. Int J Life Cycle Assess 11(1):97–104CrossRefGoogle Scholar
  20. Nunes Junior D (2012) Indicadores de desempenho da agroindústria canavieira: Safras 2010/2011 e2011/2012 (Performance Indicators of Sugarcane Agroindustry: Seasons 2010/2011 and 2011/2012). Grupo IDEA, Ribeirão Preto, BrasilGoogle Scholar
  21. Nunes Junior D (2014) Indicadores de desempenho da agroindústria canavieira: Safras 2012/2013 e 2013/2014 (Performance Indicators of Sugarcane Agroindustry: Seasons 2012/2013 and 2013/2014). Grupo IDEA, Ribeirão Preto, BrasilGoogle Scholar
  22. Onat NC, Kucukvar M, Tatari O (2014) Integrating triple bottom line input–output analysis into life cycle sustainability assessment framework: the case for US buildings. Int J Life Cycle Assess 19:1488–1505CrossRefGoogle Scholar
  23. Ramirez PKS, Petti L, Haberland NT et al (2014) Subcategory assessment method for social life cycle assessment. Part 1: methodological framework. Int J Life Cycle Assess 19(8):1515–1523CrossRefGoogle Scholar
  24. Rugani B, Panasiuk D, Benetto E (2012) An input-output based framework to evaluate human labor in life cycle assessment. Int J Life Cycle Assess 18:172–184Google Scholar
  25. UNEP/SETAC (2009) Guidelines for social life cycle assessment of products. United Nations Environment Programme, ParisGoogle Scholar
  26. UNEP/SETAC (2011) The methodological sheets for sub-categories in social life cycle assessment (SLCA). United Nations Environment Programme, ParisGoogle Scholar
  27. Watanabe MDB, Chagas MF, Cavalett O et al (2015) Hybrid input-output life cycle assessment of first and second generation ethanol production technologies in Brazil. J Ind Ecol. doi:10.1111/jiec.12325 Google Scholar
  28. Zamagni A, Amerighi O, Buttol P (2011) Strengths or bias in social LCA? Int J Life Cycle Assess 16(7):596–598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexandre Souza
    • 1
  • Marcos Djun Barbosa Watanabe
    • 1
  • Otavio Cavalett
    • 1
  • Cassia Maria Lie Ugaya
    • 2
    • 3
  • Antonio Bonomi
    • 1
  1. 1.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrasil
  2. 2.Universidade Tecnológica Federal do Paraná (UTFPR)CuritibaBrasil
  3. 3.CNPq fellowCuritibaBrazil

Personalised recommendations