Life cycle inventory practices for major nitrogen, phosphorus and carbon flows in wastewater and sludge management systems

Abstract

Purpose

Nitrogen, phosphorus and carbon originating from wastewater and sludge can, depending on their partitioning during wastewater treatment, either become available as potential resources or leave as emissions. Several reviews have highlighted the dependence of life cycle assessment (LCA) results on the inventory data. To provide a foundation for future assessments of systems in which resources are utilised from wastewater or sludge, this paper identifies common practice and highlights deficiencies in the selection and quantification of nitrogen, phosphorus and carbon containing flows.

Methods

Inventories of major direct flows containing nitrogen, phosphorus and carbon in 62 studies on wastewater and sludge management operations have been reviewed. A special focus was put on flows of nitrogen, phosphorus and carbon originating from the wastewater and sludge and on how these are either leaving the system as emissions and hereby contributing to environmental impacts, or how potential resource flows of these elements are accounted for, in particular when sludge is used in agriculture.

Results and discussion

The current study shows a large variation between studies regarding what resource and emission flows were included in inventories on wastewater and sludge treatment, the type of data used (primary or secondary data) and, when flows have been modelled rather than measured, how the modelling has been done. Except for nitrogen and phosphorus emissions via the effluent, which were generally quantified using measured data or data modelled to represent the specific situation, direct emissions to air from the water and sludge lines at the wastewater treatment plant were mostly estimated using secondary data, sometimes of poor data quality. In systems where resources were recovered through agricultural application of sludge, studies often credited the system for avoided use of mineral fertiliser, but the considered replacement ratio differed.

Conclusions

The current review identified increased completeness and specificity in the modelling of the evaluated flows as particularly relevant for future studies and highlighted a need for improved transparency of data inventories. The review can be used as a support for LCA analysts in future studies, providing an inventory of common practices and pinpointing deficiencies, and can thereby support more conscious and well-motivated choices as regard which flows to include in assessments and on the quantification of these flows.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Amount of oxygen required to chemically oxidize organic and inorganic compounds present in a sample, commonly applied to indirectly measure the amount of organic matter.

  2. 2.

    Another indirect measure of organic matter, as COD, but indicating just levels of biodegradable organic material.

References

  1. Ahmed MT (2011) Life cycle analysis in wastewater: a sustainability perspective. In: Barceló D, Petrovic M (eds) Waste water treatment and reuse in the Mediterranean Region. The handbook of environmental chemistry, vol 14. Berlin Heidelberg, pp 125–154

  2. Aronsson H, Torstensson G (2004) Beräkning av olika odlingsåtgärders inverkan på kväveutlakningen. Beskrivning av ett pedagogiskt verktyg för beräkning av kväveutlakning från enskilda fält och gårdar (in Swedish). Ekohydrologi 78, Division of Waster Quality Management, Swedish University of Agricultural Sciences, Sweden

    Google Scholar 

  3. Australian Greenhouse Office (1998) Workbook for waste. Canberra, Australia

    Google Scholar 

  4. Bengtsson M, Lundin M, Molander S (1997) Life cycle assessment of wastewater systems, vol 9, Technical environmental planning. Chalmers University of Technology, Göteborg, Sweden

    Google Scholar 

  5. Bertanza G, Canato M, Heimersson S, Laera G, Salvetti R, Slavik E, Svanström M (2014) Techno-economic and environmental assessment of sewage sludge wet oxidation. Environ Sci Pollut Res 127:7327–7338

    Google Scholar 

  6. Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16:21–28

    Google Scholar 

  7. Brown S, Beecher N, Carpenter A (2010) Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Environ Sci Technol 44:9509–9515

    CAS  Article  Google Scholar 

  8. Cakir FY, Stenstrom MK (2005) Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Res 39:4197–4203

    CAS  Article  Google Scholar 

  9. Cao Y, Pawłowski A (2013) Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour Technol 127:81–91

    CAS  Article  Google Scholar 

  10. Chai C, Zhang D, Yu Y, Feng Y, Wong MS (2015) Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China. Water 7:918–938

    Article  Google Scholar 

  11. Chen S, Chen B (2013) Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives. Bioresour Technol 144:296–303

    CAS  Article  Google Scholar 

  12. Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177

    CAS  Article  Google Scholar 

  13. Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, Shaw A (2013) Life cycle assessment applied to wastewater treatment: state of the art. Water Res 47:5480–5492

    CAS  Article  Google Scholar 

  14. Czepiel P, Crill P, Harriss R (1995) Nitrous oxide emissions from municipal wastewater treatment. Environ Sci Technol 47:2352–2356

    Article  Google Scholar 

  15. Czepiel P, Douglas E, Harriss R, Crill P (1996) Measurements of N2O from composted organic wastes. Environ Sci Technol 30:2519–2525

    CAS  Article  Google Scholar 

  16. Dalemo M, Sonesson U, Jönsson H, Björklund A (1998) Effects of including nitrogen emissions from soil in environmental systems analysis of waste management strategies. Resour Conserv Recycl 24:363–381

    Article  Google Scholar 

  17. DCCEE (2012) National greenhouse and energy reporting (measurement) determination. Australian Government, Canberra

    Google Scholar 

  18. De Haas D, Foley J, Barr K (2008) Greenhouse gas inventories from WWTPs—the tradeoff with nutrient removal. Paper presented at the Sustainability 2008 Green practices for the Water Environment, National Harbor, MD, USA

  19. De Haas DW, Pepperell C, Foley J (2014) Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data. Water Sci Technol 69:451–463

    Article  Google Scholar 

  20. Debruyn W, Lissens G, Van Rensbergen J, Wevers M (1994) Nitrous oxide emissions from waste water. Environ Monit Assess 31:159–165

    CAS  Article  Google Scholar 

  21. Djodjic F, Börling K, Bergström L (2004) Phosphorus leaching in relation to soil type and soil phosphorus content. J Environ Qual 33:678–684

    CAS  Article  Google Scholar 

  22. Doca G (2009a) Life cycle inventories of waste treatment services. Part II “waste incineration”. Ecoinvent report no 13. Swiss centre for Life Cycle Inventories, St. Gallen

    Google Scholar 

  23. Doca G (2009b) Life cycle inventories of waste treatment services. Part IV “wastewater treatment”. Ecoinvent report no 13. Swiss centre for Life Cycle Inventories, St. Gallen

    Google Scholar 

  24. Dong J, Chi Y, Tang Y, Wang F, Huang Q (2014) Combined life cycle environmental and exergetic assessment of four typical sewage sludge treatment techniques in China. Energy Fuel 28:2114–2122

    CAS  Article  Google Scholar 

  25. Emmerson RHC, Morse GK, Lester JN, Edge DR (1995) The life-cycle analysis of small-scale sewage-treatment processes. J Chart Inst Water E 9:317–325

    CAS  Article  Google Scholar 

  26. European Commission Joint Research Centre (2010) ILCD Handbook—International Reference Life Cycle Data System, 1st edn. European Union. doi:10.2788/38479

  27. Flodman M (2002) Emissions of methane, nitrous oxide and ammonia from storing of digested sludge [Emissioner av metan, lustgas och ammoniak vid lagring av avvattnat rötslam] (in Swedish). Swedish University of Agricultural Sciences Uppsala, Sweden

    Google Scholar 

  28. Foley J, Lant P, Donlon P (2008) Fugitive greenhouse gas emissions from wastewater systems. Water 35:62–72

    Google Scholar 

  29. Foley J, de Haas D, Hartley K, Lant P (2010a) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44:1654–1666

    CAS  Article  Google Scholar 

  30. Foley J, de Haas D, Yuan Z, Lant P (2010b) Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res 44:831–844

    CAS  Article  Google Scholar 

  31. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010c) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637

    CAS  Article  Google Scholar 

  32. Friedrich E, Pillay S, Buckley CA (2007) The use of LCA in the water industry and the case for an environmental performance indicator. Water SA 33:443–451

    Google Scholar 

  33. Goedkoop M, Heijungs R, Huijbregts MA, De Schryver A, Struijs J, van Zelm R (2013) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, Report 1: characterisation. Ruimte en Milieu, Ministerie von Volkhuisvesting, Ruimtelijke Ordening en Milieubeheer

  34. Griffith DR, Barnes RT, Raymond PA (2009) Inputs of fossil carbon from wastewater treatment plants to U.S. rivers and oceans. Environ Sci Technol 43:5647–5651

    CAS  Article  Google Scholar 

  35. Guinée JB, Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A, Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H, Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment, Operational guide to the ISO standards. I: LCA in perspective. Kluwer Academic Publishers, Dordrecht, doi:cml.leiden.edu/research/industrialecology/researchprojects/finished/new-dutch-lca-guide.html

  36. Guisasola A, de Haas D, Keller J, Yuan Z (2008) Methane formation in sewer systems. Water Res 42:1421–1430

    CAS  Article  Google Scholar 

  37. Heimersson S, Harder R, Peters GM, Svanström M (2014a) Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health. Environ Sci Technol 48:9446–9453

    CAS  Article  Google Scholar 

  38. Heimersson S, Morgan-Sagastume F, Peters GM, Werker A, Svanström M (2014b) Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnol 31:383–393

    CAS  Article  Google Scholar 

  39. Hobson J (2003) CH4 and N2O emissions from waste water handling—good practice guidance and uncertainty management in National Greenhouse Gas Inventories

  40. Hospido A, Moreira MT, Martín M, Rigola M, Feijoo G (2005) Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes. Int J Life Cycle Assess 10:336–345

    CAS  Article  Google Scholar 

  41. Hospido A, Moreira MT, Feijoo G (2008) A comparison of municipal wastewater treatment plants for big centres of population in Galicia (Spain). Int J Life Cycle Assess 13:57–64

    CAS  Article  Google Scholar 

  42. Houillon G, Jolliet O (2005) Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. J Clean Prod 13:287–299

    Article  Google Scholar 

  43. Hvitved-Jacobsen T (2002) Sewer processes: microbial and chemical process engineering of sewer networks. CRC Press, USA

    Google Scholar 

  44. IPCC (1997a) Intergovernmental Panel on Climate Change guidelines for National Greenhouse Gas Inventories. In: Houghton JT, Meira Filho LG, Lim B, Tréanton K, Mamaty I, Bonduki Y, Griggs DJ, Callander BA (eds) Intergovernmental Panel on Climate Change. France, Paris

  45. IPCC (1997b) Volume 4—agriculture. In: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference manual, vol 3. Intergovernmental Panel on Climate Change

  46. IPCC (2006a) Emissions from managed soils, and CO2 emissions from lime and urea applications. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for National Greenhouse Gas Inventories, vol 4, Prepared by the National Greenhouse Gas Inventories Programme. Agriculture, Forestry and other land use. IGES, Japan

    Google Scholar 

  47. IPCC (2006b) Waste. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for National Greenhouse Gas Inventories, vol 5. The Intergovernmental Panel on Climate Change (IPCC), Japan

    Google Scholar 

  48. Ishii SKL, Boyer TH (2015) Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: focus on urine nutrient management. Water Res 79:88–103

    CAS  Article  Google Scholar 

  49. Jeppsson U, Baky A, Hellström D, Jönsson H, Kärrman E (2005) The URWARE wastewater treatment plant models, report 2005:5. Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden

    Google Scholar 

  50. Johansson K, Perzon M, Fröling M, Mossakowska A, Svanström M (2008) Sewage sludge handling with phosphorus utilization—life cycle assessment of four alternatives. J Clean Prod 16:135–151

    Article  Google Scholar 

  51. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Schleiss K, Spielmann M, Stettler C, Sutter J (2007) Life cycle inventories of bioenergy. Ecoinvent report No.17. Swiss Centre for Life Cycle Inventories, Dubendorf, Switzerland

  52. Kalbar PP, Karmakar S, Asolekar SR (2013) Assessment of wastewater treatment technologies: life cycle approach. Water Environ J 27:261–268

    CAS  Article  Google Scholar 

  53. Kalbar PP, Karmakar S, Asolekar SR (2014) Life cycle-based environmental assessment of municipal wastewater treatment plant in India. Int J Environ Waste Manag 14:84–98

    Article  Google Scholar 

  54. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103

    CAS  Article  Google Scholar 

  55. Karlsson S, Rodhe L (2002) Översyn av Statistiska Centralbyråns beräkning av ammoniakavgången i jordbruket – emissionsfaktorer för ammoniak vid lagring och spridning av stallgödsel (in Swedish). JTI – Institutet för jordbruks- och miljöteknik, Sweden

    Google Scholar 

  56. Larsen HF, Hauschild M, Wenzel H, Almemark M (2007) NEPTUNE—new sustainable concepts and processes for optimization and upgrading municipal wastewater and sludge treatment, Work Package 4—assessment of environmental sustainability and best practice. Deliverable 4.1—homogeneous LCA methodology agreed by NEPTUNE and INNOWATECH. Contract No. 036845. www.eu-neptune.org

  57. Larsen HF, Hansen PA, Boyer-Souchet F (2010) NEPTUNE—new sustainable concepts and processes for optimization and upgrading municipal wastewater and sludge treatment, Work Package 4—assessment of environmental sustainability and best practice. Deliverable 4.3—decision support guideline based on LCA and cost/efficiency assessment Contract No. 036845. www.eu-neptune.org

  58. Lassaux S, Renzoni R, Germain A (2007) Life cycle assessment of water from the pumping station to the wastewater treatment plant. Int J Life Cycle Assess 12:118–126

    CAS  Article  Google Scholar 

  59. Law Y, Jacobsen GE, Smith AM, Yuan Z, Lant P (2013) Fossil organic carbon in wastewater and its fate in treatment plants. Water Res 47:5270–5281

    CAS  Article  Google Scholar 

  60. Lederer J, Rechberger H (2010) Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options. Waste Manag 30:1043–1056

    CAS  Article  Google Scholar 

  61. Li X, Takaoka M, Zhu F, Wang J, Oshita K, Mizuno T (2013) Environmental and economic assessment of municipal sewage sludge management—a case study in Beijing, China. Water Sci Technol 67:1465–1473

    CAS  Article  Google Scholar 

  62. Liao Y, Qi Y, Ma X (2009) Environmental impact assessment of sewage sludge incineration treatments (in Chinese). Acta Sci Circum. 2359–2365

  63. Linderholm K, Tillman AM, Mattsson JE (2012) Life cycle assessment of phosphorus alternatives for Swedish agriculture. Resour Conserv Recycl 66:27–39

    Article  Google Scholar 

  64. Liu B, Wei Q, Zhang B, Bi J (2013) Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China. Sci Total Environ 447:361–369

    CAS  Article  Google Scholar 

  65. Lundie S, Peters GM, Beavis PC (2004) Life cycle assessment for sustainable metropolitan water systems planning. Environ Sci Technol 38:3465–3473

    CAS  Article  Google Scholar 

  66. Lundin M, Bengtsson M, Molander S (2000) Life cycle assessment of wastewater systems: influence of system boundaries and scale on calculated environmental loads. Environ Sci Technol 34:180–186

    CAS  Article  Google Scholar 

  67. Lundin M, Olofsson M, Pettersson GJ, Zetterlund H (2004) Environmental and economic assessment of sewage sludge handling options. Resour Conserv Recycl 41:255–278

    Article  Google Scholar 

  68. McDevitt JE, Langer ER, Leckie AC (2013) Community engagement and environmental life cycle assessment of Kaikoura’s biosolid reuse options. Sustainability (Switzerland) 5:242–255

    Article  Google Scholar 

  69. McMahon PB, Dennehy KF (1999) N2O emissions from a nitrogen-enriched river. Environ Sci Technol 33:21–25

    CAS  Article  Google Scholar 

  70. Miller M, O’Connor GA (2009) The longer-term phytoavailability of biosolids-phosphorus. Agron J 101:889–896

    CAS  Article  Google Scholar 

  71. Miller-Robbie L, Ulrich BA, Ramey DF, Spencer KS, Herzog SP, Cath TY, Stokes JR, Higgins, CP (2015) Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. J Clean Prod 91:118–127

  72. Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF (2014) Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag 34:185–195

    CAS  Article  Google Scholar 

  73. Moiser AR, Hutchinson GL, Sabey BR, Baxter J (1982) Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge. J Environ Qual 11:78–81

    Article  Google Scholar 

  74. Morera S, Comas J, Poch M, Corominas L (2015) Connection of neighboring wastewater treatment plants: economic and environmental assessment. J Clean Prod 90:34–42

    Article  Google Scholar 

  75. Nakakubo T, Tokai A, Ohno K (2012) Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. J Clean Prod 32:157–172

    CAS  Article  Google Scholar 

  76. Niero M, Pizzol M, Bruun HG, Thomsen M (2014) Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J Clean Prod 68:25–35

    CAS  Article  Google Scholar 

  77. Ontiveros GA, Campanella EA (2013) Environmental performance of biological nutrient removal processes from a life cycle perspective. Bioresour Technol 150:506–512

    CAS  Article  Google Scholar 

  78. Pasqualino JC, Meneses M, Abella M, Castells F (2009) LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant. Environ Sci Technol 43:3300–3307

    CAS  Article  Google Scholar 

  79. Peters GM, Rowley HV (2009) Environmental comparison of biosolids management systems using life cycle assessment. Environ Sci Technol 43:2674–2679

    CAS  Article  Google Scholar 

  80. Pettersson G (2001) Livscykelanalys av fyra slamhanteringstekniker (in Swedish), Master thesis. Chalmers University of Technology, Sweden

    Google Scholar 

  81. Remy C (2010) Life cycle assessment of conventional and source separation systems for urban wastewater management. Der Technischen Universität, Berlin, Germany

    Google Scholar 

  82. Remy C, Jekel M (2008) Sustainable wastewater management: life cycle assessment of conventional and source-separating urban sanitation systems. Water Sci Technol 58:1555–1562

    CAS  Article  Google Scholar 

  83. Renou S, Thomas JS, Aoustin E, Pons MN (2008) Influence of impact assessment methods in wastewater treatment LCA. J Clean Prod 16:1098–1105

    Article  Google Scholar 

  84. Righi S, Oliviero L, Pedrini M, Buscaroli A, Della Casa C (2013) Life cycle assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. J Clean Prod 44:8–17

    Article  Google Scholar 

  85. Rochette P, Angers DA, Chantigny MH, Bertrand N (2008) Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil. Soil Sci Soc Am J 72:1363–1369

  86. Rodriguez-Garcia G, Molinos-Senante M, Hospido A, Hernández-Sancho F, Moreira MT, Feijoo G (2011) Environmental and economic profile of six typologies of wastewater treatment plants. Water Res 45:5997–6010

    CAS  Article  Google Scholar 

  87. Rodriguez-Garcia G, Hospido A, Bagley DM, Moreira MT, Feijoo G (2012) A methodology to estimate greenhouse gases emissions in life cycle inventories of wastewater treatment plants. Environ Impact Assess Rev 37:37–46

    Article  Google Scholar 

  88. Rodriguez-Garcia G, Frison N, Vázquez-Padín JR, Hospido A, Garrido JM, Fatone F, Bolzonella D, Moreira MT, Feijoo G (2014) Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Sci Total Environ 490:871–879

  89. Roschke M (2003) Verwertung der Gärrückstände (Application of digester residuals). In: Heiermann M, Plöchl M (eds) Biogas in der Landwirtschaft (Biogas in agriculture), Ministerium für Landwirtschaft. Umweltschutz und Raumordnung des Landes Brandenburg, Potsdam, Germany

    Google Scholar 

  90. RVF (2000) Kompostanvändning i jordbruket. En internationell utblick. (Compost use in agriculture. An international outlook, in Swedish). RFV Utveckling, report 00:6

  91. Schaubroeck T, De Clippeleir H, Weissenbacher N, Dewulf J, Boeckx P, Vlaeminck SE, Wett B (2015) Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res 74:166–179

    CAS  Article  Google Scholar 

  92. Sharpley A (1995) Fate and transport of nutrients: phosphorus. National Agricultural Water Quality Laboratory. US Department of Agriculture, Oklahoma, USA

    Google Scholar 

  93. Shomura S (2010) Comparative evaluation of various sewage sludge treatment systems from the perspective of energy consumption, Master’s thesis. Kyoto University, Japan

    Google Scholar 

  94. Short MD, Daikeler A, Peters GM, Mann K, Ashbolt NJ, Stuetz RM, Peirson WL (2013a) Municipal gravity sewers: an unrecognised source of nitrous oxide. Sci Total Environ 468–469:211–218

    Google Scholar 

  95. Short MD, Peters GM, Peirson WL, Ashbolt NJ (2013b) Marine nitrous oxide emissions: an unknown liability for the international water sector. Environ Sci Pol 33:209–221

    CAS  Article  Google Scholar 

  96. Sørensen BL, Dall OL, Habib K (2015) Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Manag. doi:10.1016/j.wasman.2015.02.012

    Google Scholar 

  97. Suzuki Y, Ochi S, Kawashima Y, Hiraide R (2003) Determination of emission factors of nitrous oxide from fluidized bed sewage sludge incinerators by long-term continuous monitoring. J Chem Eng Jpn 36:458–463

  98. Svanström M, Fröling M, Johansson K, Olsson M (2004) Livscykelanalys av aktuella slamhanteringsmetoder för Stockholm Vatten. Stockholm Vatten, Sweden

    Google Scholar 

  99. Svanström M, Laera G, Heimersson S (2015) Problem or resource—why it is important for the environment to keep track of nitrogen, phosphorus and carbon in wastewater and sludge management. J Civil Environ Eng 5:200. doi:10.4172/2165-784X.1000200

    Google Scholar 

  100. Svoboda K, Baxter D, Martinec J (2006) Nitrous oxide emissions from waste incineration. Chem Pap 60:78–90

    CAS  Article  Google Scholar 

  101. Swedish EPA (2003) Sweden's national inventory report 2003. Submitted under the United Nations Convention on Climate Change. Sewdish Environmental Protection Agency

  102. Sylvis Environmental (2009) The biosolids emissions assessment model (BEAM): a method for determining greenhouse gas emissions from Canadian biosolids management practices. http://www.ccme.ca/files/Resources/waste/biosolids/beam_final_report_1432.pdf

  103. Sylvis Environmental (2011) Biosolids emissions assessment model (BEAM) Canadian council of ministers of the environment. http://www.ccme.ca/en/resources/waste/biosolids.html

  104. Tidåker P, Kärrman E, Baky A, Jönsson H (2005) Wastewater management integrated with farming, an environmental systems analysis of the model city Surahammar. SLU, Department of Biometry and Engineering, Uppsala, Sweden

    Google Scholar 

  105. Tidåker P, Kärrman E, Baky A, Jönsson H (2006) Wastewater management integrated with farming—an environmental systems analysis of a Swedish country town. Resour Conserv Recycl 47:295–315

    Article  Google Scholar 

  106. Tillman AM, Svingby M, Lundström H (1998) Life cycle assessment of municipal waste water systems. Int J Life Cycle Assess 3:145–157

    CAS  Article  Google Scholar 

  107. UKWIR (2012) Workbook for estimating operational GHG emissions, Version 6

  108. USEPA (2002) Solid waste management and greenhouse gases: a life-cycle assessment of emissions and sinks. United States Environmental Protection Agency

  109. Vogt R, Knappe F, Giegrich J, Detzel A (2002) Ökobilanz Bioabfallverwertung: Untersuchung zur Umweltverträglichkeit von Systemen zur Verwertung von biologisch-organischen Abfällen. Schmidt

  110. Westling K (2011) Lustgasemissioner från avloppsreningsverk - en litteraturstudie (in Swedish). IVL Svenska Miljöinstitutet AB, Sweden

    Google Scholar 

  111. Wicht H (1996) N2O-Emissionen durch den Betrieb biologischer Kläranlagen (N2O emissions during operation of biological wastewater treatment plants, in German). Institut für Siedlungswasserwirtschaft, TU Braunschweig

    Google Scholar 

  112. Xu C, Chen W, Hong J (2014) Life-cycle environmental and economic assessment of sewage sludge treatment in China. J Clean Prod 67:79–87

    CAS  Article  Google Scholar 

  113. Yin Z, Youcai Z, Hongjiang I (2010) Predictive method research of sludge landfill gas production (In Chinese). J Environ Sci (China) 30:204–208

    Google Scholar 

  114. Yoshida H, Christensen TH, Scheutz C (2013) Life cycle assessment of sewage sludge management: a review. Waste Manag Res 31:1083–1101

    Article  Google Scholar 

  115. Yoshida H, Clavreul J, Scheutz C, Christensen TH (2014) Influence of data collection schemes on the life cycle assessment of a municipal wastewater treatment plant. Water Res 56:292–303

    CAS  Article  Google Scholar 

  116. Zang Y, Li Y, Wang C, Zhang W, Xiong W (2015) Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. J Clean Prod 107:676–692

    CAS  Article  Google Scholar 

  117. Zheng H, Hanaki K, Matsuo T (1994) Production of nitrous oxide gas during nitrification of wastewater. Water Sci Technol 30:133–141

    CAS  Google Scholar 

Download references

Acknowledgments

This project has received funding from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) under grant agreement no. 2012-1122. Göteborgs Stad Kretslopp och Vatten, the Swedish Water & Wastewater Association, Gryaab AB, The Käppala Association, Stockholm Vatten AB, Sydvästra Stockholmsregionens va-verksaktiebolag (Syvab), Uppsala Vatten och Avfall AB and VASYD are also greatly acknowledged for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sara Heimersson.

Additional information

Responsible editor: Almudena Hospido

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

contains a table displaying the review results in more detail, including full references to the reviewed articles. (XLSX 55.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heimersson, S., Svanström, M., Laera, G. et al. Life cycle inventory practices for major nitrogen, phosphorus and carbon flows in wastewater and sludge management systems. Int J Life Cycle Assess 21, 1197–1212 (2016). https://doi.org/10.1007/s11367-016-1095-8

Download citation

Keywords

  • Biosolids
  • Data quality
  • LCA
  • Life cycle assessment
  • Nutrient flows
  • Sewage