Life cycle inventory practices for major nitrogen, phosphorus and carbon flows in wastewater and sludge management systems

  • Sara Heimersson
  • Magdalena Svanström
  • Giuseppe Laera
  • Gregory Peters



Nitrogen, phosphorus and carbon originating from wastewater and sludge can, depending on their partitioning during wastewater treatment, either become available as potential resources or leave as emissions. Several reviews have highlighted the dependence of life cycle assessment (LCA) results on the inventory data. To provide a foundation for future assessments of systems in which resources are utilised from wastewater or sludge, this paper identifies common practice and highlights deficiencies in the selection and quantification of nitrogen, phosphorus and carbon containing flows.


Inventories of major direct flows containing nitrogen, phosphorus and carbon in 62 studies on wastewater and sludge management operations have been reviewed. A special focus was put on flows of nitrogen, phosphorus and carbon originating from the wastewater and sludge and on how these are either leaving the system as emissions and hereby contributing to environmental impacts, or how potential resource flows of these elements are accounted for, in particular when sludge is used in agriculture.

Results and discussion

The current study shows a large variation between studies regarding what resource and emission flows were included in inventories on wastewater and sludge treatment, the type of data used (primary or secondary data) and, when flows have been modelled rather than measured, how the modelling has been done. Except for nitrogen and phosphorus emissions via the effluent, which were generally quantified using measured data or data modelled to represent the specific situation, direct emissions to air from the water and sludge lines at the wastewater treatment plant were mostly estimated using secondary data, sometimes of poor data quality. In systems where resources were recovered through agricultural application of sludge, studies often credited the system for avoided use of mineral fertiliser, but the considered replacement ratio differed.


The current review identified increased completeness and specificity in the modelling of the evaluated flows as particularly relevant for future studies and highlighted a need for improved transparency of data inventories. The review can be used as a support for LCA analysts in future studies, providing an inventory of common practices and pinpointing deficiencies, and can thereby support more conscious and well-motivated choices as regard which flows to include in assessments and on the quantification of these flows.


Biosolids Data quality LCA Life cycle assessment Nutrient flows Sewage 



This project has received funding from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) under grant agreement no. 2012-1122. Göteborgs Stad Kretslopp och Vatten, the Swedish Water & Wastewater Association, Gryaab AB, The Käppala Association, Stockholm Vatten AB, Sydvästra Stockholmsregionens va-verksaktiebolag (Syvab), Uppsala Vatten och Avfall AB and VASYD are also greatly acknowledged for financial support.

Supplementary material

11367_2016_1095_MOESM1_ESM.xlsx (56 kb)
Online Resource 1 contains a table displaying the review results in more detail, including full references to the reviewed articles. (XLSX 55.6 kb)


  1. Ahmed MT (2011) Life cycle analysis in wastewater: a sustainability perspective. In: Barceló D, Petrovic M (eds) Waste water treatment and reuse in the Mediterranean Region. The handbook of environmental chemistry, vol 14. Berlin Heidelberg, pp 125–154Google Scholar
  2. Aronsson H, Torstensson G (2004) Beräkning av olika odlingsåtgärders inverkan på kväveutlakningen. Beskrivning av ett pedagogiskt verktyg för beräkning av kväveutlakning från enskilda fält och gårdar (in Swedish). Ekohydrologi 78, Division of Waster Quality Management, Swedish University of Agricultural Sciences, SwedenGoogle Scholar
  3. Australian Greenhouse Office (1998) Workbook for waste. Canberra, AustraliaGoogle Scholar
  4. Bengtsson M, Lundin M, Molander S (1997) Life cycle assessment of wastewater systems, vol 9, Technical environmental planning. Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  5. Bertanza G, Canato M, Heimersson S, Laera G, Salvetti R, Slavik E, Svanström M (2014) Techno-economic and environmental assessment of sewage sludge wet oxidation. Environ Sci Pollut Res 127:7327–7338Google Scholar
  6. Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16:21–28Google Scholar
  7. Brown S, Beecher N, Carpenter A (2010) Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Environ Sci Technol 44:9509–9515CrossRefGoogle Scholar
  8. Cakir FY, Stenstrom MK (2005) Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Res 39:4197–4203CrossRefGoogle Scholar
  9. Cao Y, Pawłowski A (2013) Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour Technol 127:81–91CrossRefGoogle Scholar
  10. Chai C, Zhang D, Yu Y, Feng Y, Wong MS (2015) Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China. Water 7:918–938CrossRefGoogle Scholar
  11. Chen S, Chen B (2013) Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives. Bioresour Technol 144:296–303CrossRefGoogle Scholar
  12. Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177CrossRefGoogle Scholar
  13. Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, Shaw A (2013) Life cycle assessment applied to wastewater treatment: state of the art. Water Res 47:5480–5492CrossRefGoogle Scholar
  14. Czepiel P, Crill P, Harriss R (1995) Nitrous oxide emissions from municipal wastewater treatment. Environ Sci Technol 47:2352–2356CrossRefGoogle Scholar
  15. Czepiel P, Douglas E, Harriss R, Crill P (1996) Measurements of N2O from composted organic wastes. Environ Sci Technol 30:2519–2525CrossRefGoogle Scholar
  16. Dalemo M, Sonesson U, Jönsson H, Björklund A (1998) Effects of including nitrogen emissions from soil in environmental systems analysis of waste management strategies. Resour Conserv Recycl 24:363–381CrossRefGoogle Scholar
  17. DCCEE (2012) National greenhouse and energy reporting (measurement) determination. Australian Government, CanberraGoogle Scholar
  18. De Haas D, Foley J, Barr K (2008) Greenhouse gas inventories from WWTPs—the tradeoff with nutrient removal. Paper presented at the Sustainability 2008 Green practices for the Water Environment, National Harbor, MD, USAGoogle Scholar
  19. De Haas DW, Pepperell C, Foley J (2014) Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data. Water Sci Technol 69:451–463CrossRefGoogle Scholar
  20. Debruyn W, Lissens G, Van Rensbergen J, Wevers M (1994) Nitrous oxide emissions from waste water. Environ Monit Assess 31:159–165CrossRefGoogle Scholar
  21. Djodjic F, Börling K, Bergström L (2004) Phosphorus leaching in relation to soil type and soil phosphorus content. J Environ Qual 33:678–684CrossRefGoogle Scholar
  22. Doca G (2009a) Life cycle inventories of waste treatment services. Part II “waste incineration”. Ecoinvent report no 13. Swiss centre for Life Cycle Inventories, St. GallenGoogle Scholar
  23. Doca G (2009b) Life cycle inventories of waste treatment services. Part IV “wastewater treatment”. Ecoinvent report no 13. Swiss centre for Life Cycle Inventories, St. GallenGoogle Scholar
  24. Dong J, Chi Y, Tang Y, Wang F, Huang Q (2014) Combined life cycle environmental and exergetic assessment of four typical sewage sludge treatment techniques in China. Energy Fuel 28:2114–2122CrossRefGoogle Scholar
  25. Emmerson RHC, Morse GK, Lester JN, Edge DR (1995) The life-cycle analysis of small-scale sewage-treatment processes. J Chart Inst Water E 9:317–325CrossRefGoogle Scholar
  26. European Commission Joint Research Centre (2010) ILCD Handbook—International Reference Life Cycle Data System, 1st edn. European Union. doi: 10.2788/38479
  27. Flodman M (2002) Emissions of methane, nitrous oxide and ammonia from storing of digested sludge [Emissioner av metan, lustgas och ammoniak vid lagring av avvattnat rötslam] (in Swedish). Swedish University of Agricultural Sciences Uppsala, SwedenGoogle Scholar
  28. Foley J, Lant P, Donlon P (2008) Fugitive greenhouse gas emissions from wastewater systems. Water 35:62–72Google Scholar
  29. Foley J, de Haas D, Hartley K, Lant P (2010a) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44:1654–1666CrossRefGoogle Scholar
  30. Foley J, de Haas D, Yuan Z, Lant P (2010b) Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res 44:831–844CrossRefGoogle Scholar
  31. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010c) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637CrossRefGoogle Scholar
  32. Friedrich E, Pillay S, Buckley CA (2007) The use of LCA in the water industry and the case for an environmental performance indicator. Water SA 33:443–451Google Scholar
  33. Goedkoop M, Heijungs R, Huijbregts MA, De Schryver A, Struijs J, van Zelm R (2013) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, Report 1: characterisation. Ruimte en Milieu, Ministerie von Volkhuisvesting, Ruimtelijke Ordening en MilieubeheerGoogle Scholar
  34. Griffith DR, Barnes RT, Raymond PA (2009) Inputs of fossil carbon from wastewater treatment plants to U.S. rivers and oceans. Environ Sci Technol 43:5647–5651CrossRefGoogle Scholar
  35. Guinée JB, Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A, Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H, Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment, Operational guide to the ISO standards. I: LCA in perspective. Kluwer Academic Publishers, Dordrecht, Scholar
  36. Guisasola A, de Haas D, Keller J, Yuan Z (2008) Methane formation in sewer systems. Water Res 42:1421–1430CrossRefGoogle Scholar
  37. Heimersson S, Harder R, Peters GM, Svanström M (2014a) Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health. Environ Sci Technol 48:9446–9453CrossRefGoogle Scholar
  38. Heimersson S, Morgan-Sagastume F, Peters GM, Werker A, Svanström M (2014b) Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnol 31:383–393CrossRefGoogle Scholar
  39. Hobson J (2003) CH4 and N2O emissions from waste water handling—good practice guidance and uncertainty management in National Greenhouse Gas InventoriesGoogle Scholar
  40. Hospido A, Moreira MT, Martín M, Rigola M, Feijoo G (2005) Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes. Int J Life Cycle Assess 10:336–345CrossRefGoogle Scholar
  41. Hospido A, Moreira MT, Feijoo G (2008) A comparison of municipal wastewater treatment plants for big centres of population in Galicia (Spain). Int J Life Cycle Assess 13:57–64CrossRefGoogle Scholar
  42. Houillon G, Jolliet O (2005) Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. J Clean Prod 13:287–299CrossRefGoogle Scholar
  43. Hvitved-Jacobsen T (2002) Sewer processes: microbial and chemical process engineering of sewer networks. CRC Press, USAGoogle Scholar
  44. IPCC (1997a) Intergovernmental Panel on Climate Change guidelines for National Greenhouse Gas Inventories. In: Houghton JT, Meira Filho LG, Lim B, Tréanton K, Mamaty I, Bonduki Y, Griggs DJ, Callander BA (eds) Intergovernmental Panel on Climate Change. France, ParisGoogle Scholar
  45. IPCC (1997b) Volume 4—agriculture. In: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference manual, vol 3. Intergovernmental Panel on Climate ChangeGoogle Scholar
  46. IPCC (2006a) Emissions from managed soils, and CO2 emissions from lime and urea applications. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for National Greenhouse Gas Inventories, vol 4, Prepared by the National Greenhouse Gas Inventories Programme. Agriculture, Forestry and other land use. IGES, JapanGoogle Scholar
  47. IPCC (2006b) Waste. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for National Greenhouse Gas Inventories, vol 5. The Intergovernmental Panel on Climate Change (IPCC), JapanGoogle Scholar
  48. Ishii SKL, Boyer TH (2015) Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: focus on urine nutrient management. Water Res 79:88–103CrossRefGoogle Scholar
  49. Jeppsson U, Baky A, Hellström D, Jönsson H, Kärrman E (2005) The URWARE wastewater treatment plant models, report 2005:5. Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, SwedenGoogle Scholar
  50. Johansson K, Perzon M, Fröling M, Mossakowska A, Svanström M (2008) Sewage sludge handling with phosphorus utilization—life cycle assessment of four alternatives. J Clean Prod 16:135–151CrossRefGoogle Scholar
  51. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Schleiss K, Spielmann M, Stettler C, Sutter J (2007) Life cycle inventories of bioenergy. Ecoinvent report No.17. Swiss Centre for Life Cycle Inventories, Dubendorf, SwitzerlandGoogle Scholar
  52. Kalbar PP, Karmakar S, Asolekar SR (2013) Assessment of wastewater treatment technologies: life cycle approach. Water Environ J 27:261–268CrossRefGoogle Scholar
  53. Kalbar PP, Karmakar S, Asolekar SR (2014) Life cycle-based environmental assessment of municipal wastewater treatment plant in India. Int J Environ Waste Manag 14:84–98CrossRefGoogle Scholar
  54. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103CrossRefGoogle Scholar
  55. Karlsson S, Rodhe L (2002) Översyn av Statistiska Centralbyråns beräkning av ammoniakavgången i jordbruket – emissionsfaktorer för ammoniak vid lagring och spridning av stallgödsel (in Swedish). JTI – Institutet för jordbruks- och miljöteknik, SwedenGoogle Scholar
  56. Larsen HF, Hauschild M, Wenzel H, Almemark M (2007) NEPTUNE—new sustainable concepts and processes for optimization and upgrading municipal wastewater and sludge treatment, Work Package 4—assessment of environmental sustainability and best practice. Deliverable 4.1—homogeneous LCA methodology agreed by NEPTUNE and INNOWATECH. Contract No. 036845.
  57. Larsen HF, Hansen PA, Boyer-Souchet F (2010) NEPTUNE—new sustainable concepts and processes for optimization and upgrading municipal wastewater and sludge treatment, Work Package 4—assessment of environmental sustainability and best practice. Deliverable 4.3—decision support guideline based on LCA and cost/efficiency assessment Contract No. 036845.
  58. Lassaux S, Renzoni R, Germain A (2007) Life cycle assessment of water from the pumping station to the wastewater treatment plant. Int J Life Cycle Assess 12:118–126CrossRefGoogle Scholar
  59. Law Y, Jacobsen GE, Smith AM, Yuan Z, Lant P (2013) Fossil organic carbon in wastewater and its fate in treatment plants. Water Res 47:5270–5281CrossRefGoogle Scholar
  60. Lederer J, Rechberger H (2010) Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options. Waste Manag 30:1043–1056CrossRefGoogle Scholar
  61. Li X, Takaoka M, Zhu F, Wang J, Oshita K, Mizuno T (2013) Environmental and economic assessment of municipal sewage sludge management—a case study in Beijing, China. Water Sci Technol 67:1465–1473CrossRefGoogle Scholar
  62. Liao Y, Qi Y, Ma X (2009) Environmental impact assessment of sewage sludge incineration treatments (in Chinese). Acta Sci Circum. 2359–2365Google Scholar
  63. Linderholm K, Tillman AM, Mattsson JE (2012) Life cycle assessment of phosphorus alternatives for Swedish agriculture. Resour Conserv Recycl 66:27–39CrossRefGoogle Scholar
  64. Liu B, Wei Q, Zhang B, Bi J (2013) Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China. Sci Total Environ 447:361–369CrossRefGoogle Scholar
  65. Lundie S, Peters GM, Beavis PC (2004) Life cycle assessment for sustainable metropolitan water systems planning. Environ Sci Technol 38:3465–3473CrossRefGoogle Scholar
  66. Lundin M, Bengtsson M, Molander S (2000) Life cycle assessment of wastewater systems: influence of system boundaries and scale on calculated environmental loads. Environ Sci Technol 34:180–186CrossRefGoogle Scholar
  67. Lundin M, Olofsson M, Pettersson GJ, Zetterlund H (2004) Environmental and economic assessment of sewage sludge handling options. Resour Conserv Recycl 41:255–278CrossRefGoogle Scholar
  68. McDevitt JE, Langer ER, Leckie AC (2013) Community engagement and environmental life cycle assessment of Kaikoura’s biosolid reuse options. Sustainability (Switzerland) 5:242–255CrossRefGoogle Scholar
  69. McMahon PB, Dennehy KF (1999) N2O emissions from a nitrogen-enriched river. Environ Sci Technol 33:21–25CrossRefGoogle Scholar
  70. Miller M, O’Connor GA (2009) The longer-term phytoavailability of biosolids-phosphorus. Agron J 101:889–896CrossRefGoogle Scholar
  71. Miller-Robbie L, Ulrich BA, Ramey DF, Spencer KS, Herzog SP, Cath TY, Stokes JR, Higgins, CP (2015) Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. J Clean Prod 91:118–127Google Scholar
  72. Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF (2014) Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag 34:185–195CrossRefGoogle Scholar
  73. Moiser AR, Hutchinson GL, Sabey BR, Baxter J (1982) Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge. J Environ Qual 11:78–81CrossRefGoogle Scholar
  74. Morera S, Comas J, Poch M, Corominas L (2015) Connection of neighboring wastewater treatment plants: economic and environmental assessment. J Clean Prod 90:34–42CrossRefGoogle Scholar
  75. Nakakubo T, Tokai A, Ohno K (2012) Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. J Clean Prod 32:157–172CrossRefGoogle Scholar
  76. Niero M, Pizzol M, Bruun HG, Thomsen M (2014) Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J Clean Prod 68:25–35CrossRefGoogle Scholar
  77. Ontiveros GA, Campanella EA (2013) Environmental performance of biological nutrient removal processes from a life cycle perspective. Bioresour Technol 150:506–512CrossRefGoogle Scholar
  78. Pasqualino JC, Meneses M, Abella M, Castells F (2009) LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant. Environ Sci Technol 43:3300–3307CrossRefGoogle Scholar
  79. Peters GM, Rowley HV (2009) Environmental comparison of biosolids management systems using life cycle assessment. Environ Sci Technol 43:2674–2679CrossRefGoogle Scholar
  80. Pettersson G (2001) Livscykelanalys av fyra slamhanteringstekniker (in Swedish), Master thesis. Chalmers University of Technology, SwedenGoogle Scholar
  81. Remy C (2010) Life cycle assessment of conventional and source separation systems for urban wastewater management. Der Technischen Universität, Berlin, GermanyGoogle Scholar
  82. Remy C, Jekel M (2008) Sustainable wastewater management: life cycle assessment of conventional and source-separating urban sanitation systems. Water Sci Technol 58:1555–1562CrossRefGoogle Scholar
  83. Renou S, Thomas JS, Aoustin E, Pons MN (2008) Influence of impact assessment methods in wastewater treatment LCA. J Clean Prod 16:1098–1105CrossRefGoogle Scholar
  84. Righi S, Oliviero L, Pedrini M, Buscaroli A, Della Casa C (2013) Life cycle assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. J Clean Prod 44:8–17CrossRefGoogle Scholar
  85. Rochette P, Angers DA, Chantigny MH, Bertrand N (2008) Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil. Soil Sci Soc Am J 72:1363–1369Google Scholar
  86. Rodriguez-Garcia G, Molinos-Senante M, Hospido A, Hernández-Sancho F, Moreira MT, Feijoo G (2011) Environmental and economic profile of six typologies of wastewater treatment plants. Water Res 45:5997–6010CrossRefGoogle Scholar
  87. Rodriguez-Garcia G, Hospido A, Bagley DM, Moreira MT, Feijoo G (2012) A methodology to estimate greenhouse gases emissions in life cycle inventories of wastewater treatment plants. Environ Impact Assess Rev 37:37–46CrossRefGoogle Scholar
  88. Rodriguez-Garcia G, Frison N, Vázquez-Padín JR, Hospido A, Garrido JM, Fatone F, Bolzonella D, Moreira MT, Feijoo G (2014) Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Sci Total Environ 490:871–879Google Scholar
  89. Roschke M (2003) Verwertung der Gärrückstände (Application of digester residuals). In: Heiermann M, Plöchl M (eds) Biogas in der Landwirtschaft (Biogas in agriculture), Ministerium für Landwirtschaft. Umweltschutz und Raumordnung des Landes Brandenburg, Potsdam, GermanyGoogle Scholar
  90. RVF (2000) Kompostanvändning i jordbruket. En internationell utblick. (Compost use in agriculture. An international outlook, in Swedish). RFV Utveckling, report 00:6Google Scholar
  91. Schaubroeck T, De Clippeleir H, Weissenbacher N, Dewulf J, Boeckx P, Vlaeminck SE, Wett B (2015) Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res 74:166–179CrossRefGoogle Scholar
  92. Sharpley A (1995) Fate and transport of nutrients: phosphorus. National Agricultural Water Quality Laboratory. US Department of Agriculture, Oklahoma, USAGoogle Scholar
  93. Shomura S (2010) Comparative evaluation of various sewage sludge treatment systems from the perspective of energy consumption, Master’s thesis. Kyoto University, JapanGoogle Scholar
  94. Short MD, Daikeler A, Peters GM, Mann K, Ashbolt NJ, Stuetz RM, Peirson WL (2013a) Municipal gravity sewers: an unrecognised source of nitrous oxide. Sci Total Environ 468–469:211–218Google Scholar
  95. Short MD, Peters GM, Peirson WL, Ashbolt NJ (2013b) Marine nitrous oxide emissions: an unknown liability for the international water sector. Environ Sci Pol 33:209–221CrossRefGoogle Scholar
  96. Sørensen BL, Dall OL, Habib K (2015) Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Manag. doi: 10.1016/j.wasman.2015.02.012 Google Scholar
  97. Suzuki Y, Ochi S, Kawashima Y, Hiraide R (2003) Determination of emission factors of nitrous oxide from fluidized bed sewage sludge incinerators by long-term continuous monitoring. J Chem Eng Jpn 36:458–463Google Scholar
  98. Svanström M, Fröling M, Johansson K, Olsson M (2004) Livscykelanalys av aktuella slamhanteringsmetoder för Stockholm Vatten. Stockholm Vatten, SwedenGoogle Scholar
  99. Svanström M, Laera G, Heimersson S (2015) Problem or resource—why it is important for the environment to keep track of nitrogen, phosphorus and carbon in wastewater and sludge management. J Civil Environ Eng 5:200. doi: 10.4172/2165-784X.1000200 Google Scholar
  100. Svoboda K, Baxter D, Martinec J (2006) Nitrous oxide emissions from waste incineration. Chem Pap 60:78–90CrossRefGoogle Scholar
  101. Swedish EPA (2003) Sweden's national inventory report 2003. Submitted under the United Nations Convention on Climate Change. Sewdish Environmental Protection AgencyGoogle Scholar
  102. Sylvis Environmental (2009) The biosolids emissions assessment model (BEAM): a method for determining greenhouse gas emissions from Canadian biosolids management practices.
  103. Sylvis Environmental (2011) Biosolids emissions assessment model (BEAM) Canadian council of ministers of the environment.
  104. Tidåker P, Kärrman E, Baky A, Jönsson H (2005) Wastewater management integrated with farming, an environmental systems analysis of the model city Surahammar. SLU, Department of Biometry and Engineering, Uppsala, SwedenGoogle Scholar
  105. Tidåker P, Kärrman E, Baky A, Jönsson H (2006) Wastewater management integrated with farming—an environmental systems analysis of a Swedish country town. Resour Conserv Recycl 47:295–315CrossRefGoogle Scholar
  106. Tillman AM, Svingby M, Lundström H (1998) Life cycle assessment of municipal waste water systems. Int J Life Cycle Assess 3:145–157CrossRefGoogle Scholar
  107. UKWIR (2012) Workbook for estimating operational GHG emissions, Version 6Google Scholar
  108. USEPA (2002) Solid waste management and greenhouse gases: a life-cycle assessment of emissions and sinks. United States Environmental Protection AgencyGoogle Scholar
  109. Vogt R, Knappe F, Giegrich J, Detzel A (2002) Ökobilanz Bioabfallverwertung: Untersuchung zur Umweltverträglichkeit von Systemen zur Verwertung von biologisch-organischen Abfällen. SchmidtGoogle Scholar
  110. Westling K (2011) Lustgasemissioner från avloppsreningsverk - en litteraturstudie (in Swedish). IVL Svenska Miljöinstitutet AB, SwedenGoogle Scholar
  111. Wicht H (1996) N2O-Emissionen durch den Betrieb biologischer Kläranlagen (N2O emissions during operation of biological wastewater treatment plants, in German). Institut für Siedlungswasserwirtschaft, TU BraunschweigGoogle Scholar
  112. Xu C, Chen W, Hong J (2014) Life-cycle environmental and economic assessment of sewage sludge treatment in China. J Clean Prod 67:79–87CrossRefGoogle Scholar
  113. Yin Z, Youcai Z, Hongjiang I (2010) Predictive method research of sludge landfill gas production (In Chinese). J Environ Sci (China) 30:204–208Google Scholar
  114. Yoshida H, Christensen TH, Scheutz C (2013) Life cycle assessment of sewage sludge management: a review. Waste Manag Res 31:1083–1101CrossRefGoogle Scholar
  115. Yoshida H, Clavreul J, Scheutz C, Christensen TH (2014) Influence of data collection schemes on the life cycle assessment of a municipal wastewater treatment plant. Water Res 56:292–303CrossRefGoogle Scholar
  116. Zang Y, Li Y, Wang C, Zhang W, Xiong W (2015) Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. J Clean Prod 107:676–692CrossRefGoogle Scholar
  117. Zheng H, Hanaki K, Matsuo T (1994) Production of nitrous oxide gas during nitrification of wastewater. Water Sci Technol 30:133–141Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSweden
  2. 2.Water Research Institute, IRSA-CNRBariItaly

Personalised recommendations