Review and advancement of the marine biotic resource use metric in seafood LCAs: a case study of Norwegian salmon feed

  • Tim CashionEmail author
  • Sara Hornborg
  • Friederike Ziegler
  • Erik Skontorp Hognes
  • Peter Tyedmers



Seafood life cycle assessment (LCA) studies have adopted the primary production required (PPR) indicator to account for the impact of these production systems (e.g., capture fisheries or aquaculture) on the ecosystems they harvest wild inputs from. However, there exists a large diversity in the application of methods to calculate PPR, and current practice often does not consider species- and ecosystem-specific factors. Here, we critically examine current practice and propose a refined method for applying the PPR metric in seafood LCAs.


We surveyed seafood LCAs that quantify PPR, or its derivatives, to examine the diversity of practice. We then defined and applied a refined method to a case study of the average Norwegian salmon feed in 2012. This refined method incorporates species-specific fishmeal and oil yields, source ecosystem-specific transfer efficiencies and expresses results as a percentage of total ecosystem production that PPR represents. Results were compared to those using previously applied methods based on the literature review, and the impact of uncertainty and natural variability of key input parameters was also assessed using Monte Carlo simulation.

Results and discussion

From the literature review, most studies do not incorporate species-specific fishmeal and oil yields or ecosystem-specific transfer efficiencies when calculating PPR. Our proposed method, which incorporated source species- and ecosystem-specific values for these parameters, provides far greater resolution of PPR than when employing global average values. When alternative methods to calculate PPR were applied to marine inputs to Norwegian salmon feeds, resulting PPR values were similar for some sources of fishmeal and oil. For other species, such as Atlantic herring from ecosystems with low transfer efficiencies, there was a large divergence in resulting PPR values. For combined inputs to Norwegian salmon feeds in 2012, the refined method resulted in a total PPR value that is three times higher than would result using the currently standard method signaling that previous LCA research may have substantially underestimated the marine biotic impacts of fishery products.


While there exists a great diversity of practice in the application of the PPR indicator in seafood LCA, the refined method should be adopted for future LCA studies to be more specific to the context of the study.


Aquaculture Biotic resource use Fisheries LCIA Primary production required Salmon feed 


  1. Alder J, Pauly D (2006) On the multiple uses of forage fish: from ecosystem to markets. Fish Cent Res Reports 14:109Google Scholar
  2. Almeida C, Vaz S, Cabral H, Ziegler F (2014) Environmental assessment of sardine (Sardina pilchardus) purse seine fishery in Portugal with LCA methodology including biological impact categories. Int J Life Cycle Assess 19:297–306. doi: 10.1007/s11367-013-0646-5 CrossRefGoogle Scholar
  3. Aubin J, Baruthio A, Mungkung R, Lazard J (2015) Environmental performance of brackish water polyculture system from a life cycle perspective : a Filipino case study. Aquaculture 435:217–227. doi: 10.1016/j.aquaculture.2014.09.019 CrossRefGoogle Scholar
  4. Aubin J, Papatryphon E, Van der Werf HMG et al (2006) Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using life cycle assessment. Aquaculture 261:1259–1268. doi: 10.1016/j.aquaculture.2006.09.008 CrossRefGoogle Scholar
  5. Aubin J, Papatryphon E, van der Werf HMG, Chatzifotis S (2009) Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J Clean Prod 17:354–361. doi: 10.1016/j.jclepro.2008.08.008 CrossRefGoogle Scholar
  6. Avadí A, Fréon P, Quispe I (2014a) Environmental assessment of Peruvian anchoveta food products: is less refined better? Int J Life Cycle Assess 19:1276–1293. doi: 10.1007/s11367-014-0737-y CrossRefGoogle Scholar
  7. Avadí A, Fréon P, Tam J (2014b) Coupled ecosystem/supply chain modelling of fish products from sea to shelf: the Peruvian anchoveta case. PLoS One. doi: 10.1371/journal.pone.0102057 Google Scholar
  8. Ayer N, Tyedmers P, Pelletier N et al (2007) LCA methodology co-product allocation in life cycle assessments of seafood production systems: review of problems and strategies. Int J Life Cycle Assess 12:480–487CrossRefGoogle Scholar
  9. Baumann M (1995) A comment on transfer efficiencies. Fish Oceanogr 4:264–266CrossRefGoogle Scholar
  10. Bishop JDK, Amaratunga GAJ, Rodriguez C (2009) Quantifying the limits of HANPP and carbon emissions which prolong total species well-being. Environ Dev Sustain 12:213–231CrossRefGoogle Scholar
  11. Boissy J, Aubin J, Drissi A et al (2011) Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 321:61–70CrossRefGoogle Scholar
  12. BSI (2012) PAS 2050-2:2012 Assessment of life cycle greenhouse gas emissionsGoogle Scholar
  13. Cao L, Diana JS, Keoleian GA, Lai Q (2011) Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales. Environ Sci Technol 45:6531–6538. doi: 10.1021/es104058z CrossRefGoogle Scholar
  14. Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefGoogle Scholar
  15. Chassot E, Bonhommeau S, Dulvy NK et al (2010) Global marine primary production constrains fisheries catches. Ecol Lett 13:495–505CrossRefGoogle Scholar
  16. Chavez FP, Messié M, Pennington JT (2011) Marine primary production in relation to climate variability and change. Ann Rev Mar Sci 3:227–260CrossRefGoogle Scholar
  17. Chen X, Samson E, Tocqueville A, Aubin J (2015) Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. J Clean Prod 87:87–95. doi: 10.1016/j.jclepro.2014.09.021 CrossRefGoogle Scholar
  18. Coll M, Libralato S, Tudela S et al (2008) Ecosystem overfishing in the ocean. PLoS One 3:e3881CrossRefGoogle Scholar
  19. Cury PM, Boyd IL, Bonhommeau S et al (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334:1703–1706CrossRefGoogle Scholar
  20. D’Orbcastel ER, Blancheton J-P, Aubin J (2009) Towards environmentally sustainable aquaculture: comparison between two trout farming systems using life cycle assessment. Aquac Eng 40:113–119CrossRefGoogle Scholar
  21. Draganovic V, Jørgensen SE, Boom R et al (2013) Sustainability assessment of salmonid feed using energy, classical exergy and eco-exergy analysis. Ecol Indic 34:277–289CrossRefGoogle Scholar
  22. Efole Ewoukem T, Aubin J, Mikolasek O et al (2012) Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. J Clean Prod 28:208–214. doi: 10.1016/j.jclepro.2011.11.039 CrossRefGoogle Scholar
  23. Emanuelsson A, Ziegler F, Pihl L et al (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19:1156–1168CrossRefGoogle Scholar
  24. FAO (1986) The products. In: Prod. fish meal oil. Accessed 5 May 2014
  25. Farmery A, Gardner C, Green BS et al (2015) Life cycle assessment of wild capture prawns: expanding sustainability considerations in the Australian northern prawn fishery. J Clean Prod 87:96–104. doi: 10.1016/j.jclepro.2014.10.063 CrossRefGoogle Scholar
  26. Foley JA, Defries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  27. Foley JA, Monfreda C, Ramankutty N, Zaks D (2007) Our share of the planetary pie. Proc Natl Acad Sci USA 104:12585–12586CrossRefGoogle Scholar
  28. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  29. Folke C, Kautsky N, Berg H et al (1998) The ecological footprint concept for sustainable seafood production: a review. Ecol Appl 8:63–71CrossRefGoogle Scholar
  30. Ford JS, Pelletier N, Ziegler F et al (2012) Proposed local ecological impact categories and indicators for life cycle assessment of aquaculture. J Ind Ecol 16:254–265CrossRefGoogle Scholar
  31. Froese R, Pauly D (2012) FishBase. In: World Wide Web Electron. Publ. version (04/2012).
  32. Gmel G (2010) The good, the bad and the ugly. Addiction 105:203–205. doi: 10.1111/j.1360-0443.2009.02764.x, author reply 205–206CrossRefGoogle Scholar
  33. Heymans J, Coll M, Libralato S, Christensen V (2011) Ecopath theory, modeling, and application to coastal ecosystems. Treatise on Estuarine and Coastal Science Elsevier, pp 93–113Google Scholar
  34. Hognes ES, Nilsson K, Sund V, Ziegler F (2014) LCA of Norwegian salmon production 2012. SINTEF: Trondheim, Norway. Retrieved from:
  35. Hornborg S, Nilsson P, Valentinsson D, Ziegler F (2012) Integrated environmental assessment of fisheries management: Swedish Nephrops trawl fisheries evaluated using a life cycle approach. Mar Policy 36:1193–1201CrossRefGoogle Scholar
  36. Hornborg S, Belgrano A, Bartolino V et al (2013a) Trophic indicators in fisheries : a call for re-evaluation Trophic indicators in fisheries : a call for re-evaluation. Biol Lett. doi:
  37. Hornborg S, Svensson M, Nilsson P, Ziegler F (2013b) By-catch impacts in fisheries: utilizing the IUCN Red list categories for enhanced product level assessment in seafood LCAs. Environ Manage 52:1239–1248Google Scholar
  38. Hutchings J, Reynolds J (2004) Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54:297–309CrossRefGoogle Scholar
  39. ISO (2006) 14040: 2006—environmental management—life cycle assessment—Principles and FrameworkGoogle Scholar
  40. Jackson A (2009) Fish in-fish out (FIFO) ratios explainedGoogle Scholar
  41. Jerbi MA, Aubin J, Garnaoui K et al (2012) Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquac Eng 46:1–9CrossRefGoogle Scholar
  42. Krausmann F, Erb K-H, Gingrich S et al (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci USA 110:10324–10329CrossRefGoogle Scholar
  43. Langlois J, Fréon P, Delgenes J-P et al (2014) New methods for impact assessment of biotic-resource depletion in LCA of fisheries: theory and application. J Clean Prod 73:63–71CrossRefGoogle Scholar
  44. Libralato S, Coll M, Tudela S et al. (2008) Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar Ecol Prog Ser 355:107–129CrossRefGoogle Scholar
  45. Lindeijer E, Müller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Haes H de, Finnveden G, Goedkoop M, et al. (eds) Life-Cycle Impact Assessment: Striving Towards Best Practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, FL, pp 11–64Google Scholar
  46. May RM (1976) Theoretical ecology: principles and applications. Saunders, PhiladelphiaGoogle Scholar
  47. McGrath KP, Pelletier NL, Tyedmers PH (2015) Life cycle assessment of a novel closed-containment salmon aquaculture technology. Environ Sci Technol 49:5628–5636CrossRefGoogle Scholar
  48. Mungkung R, Aubin J, Prihadi TH et al (2013) Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J Clean Prod 57:249–256. doi: 10.1016/j.jclepro.2013.05.029 CrossRefGoogle Scholar
  49. Nilsson P, Ziegler F (2007) Spatial distribution of fishing effort in relation to seafloor habitats in the Kattegat, a GIS analysis. Aquat Conserv Mar Freshw Ecosyst 440:421–440CrossRefGoogle Scholar
  50. Papatryphon E, Petit J, van der Werf HMG, Kaushik SJ (2003) Life cycle assessment of trout farming in France: a farm level approach. In: Halberg N (ed) DIAS Rep. Life Cycle Assess. Agri-food Sect, Bygholm, Denmark, pp 71–77Google Scholar
  51. Papatryphon E, Petit J, Kaushik SJ, van der Werf HMG (2004) Environmental impact assessment of salmonid feeds using life cycle assessment (LCA). AMBIO A J Hum Environ 33:316–323CrossRefGoogle Scholar
  52. Parker R, Tyedmers P (2012a) Uncertainty and natural variability in the ecological footprint of fisheries: a case study of reduction fisheries for meal and oil. Ecol Indic 16:76–83Google Scholar
  53. Parker R, Tyedmers P (2012b) Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba). Environ Sci Technol 46:4958–4965Google Scholar
  54. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257CrossRefGoogle Scholar
  55. Pauly D, Alder J, Bennett E et al (2003) The future for fisheries. Science 302:1359–1361CrossRefGoogle Scholar
  56. Pelletier N, Tyedmers P (2007) Feeding farmed salmon: is organic better? Aquaculture 272:399–416CrossRefGoogle Scholar
  57. Pelletier N, Tyedmers P (2010) Life cycle assessment of frozen tilapia fillets from Indonesian lake-based and pondbased intensive aquaculture systems. J Ind Ecol 14:467–481. doi: 10.1111/j.1530-9290.2010.00244.x CrossRefGoogle Scholar
  58. Pelletier N, Tyedmers P, Sonesson U et al (2009) Not all salmon are created equal: life cycle assessment (LCA) of global salmon farming systems. Environ Sci Technol 43:8730–8736CrossRefGoogle Scholar
  59. Pelletier N, Audsley E, Brodt S et al (2011) Energy intensity of agriculture and food systems. Annu Rev Environ Resour 36:223–246CrossRefGoogle Scholar
  60. Pelletier N, Ardente F, Brandão M et al (2014) Rationales for and limitations of preferred solutions for multi-functionality problems in LCA: is increased consistency possible? Int J Life Cycle Assess 20:74–86CrossRefGoogle Scholar
  61. Pinsky ML, Jensen OP, Ricard D, Palumbi SR (2011) Unexpected patterns of fisheries collapse in the world’s oceans. Proc Natl Acad Sci 108:8317–8322CrossRefGoogle Scholar
  62. Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1620CrossRefGoogle Scholar
  63. Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32Google Scholar
  64. Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166:72–76CrossRefGoogle Scholar
  65. Sauvant D, Perez JM, Tran G (2004) Tables of composition and nutritional value of primary materials destined for stock animals: pigs, poultry, cattle, sheep, goats, rabbits, horses, fish, 2nd edn. Tables Compos Val Nutr des matieres premieres Destin aux animaux d’elage Porc volailles, Bov ovins, caprins, lapins, chevaux, Poisson. doi:  10.3920/978-90-8686-668-7
  66. Sea Around Us Project (2014) Large marine ecosystems (LME)—Sea Around Us Project. Accessed 18 Feb 2014
  67. Shepherd CJ, Jackson A (2013) Global fishmeal and fish-oil supply: inputs, outputs and markets. J Fish Biol 83:1046–1066Google Scholar
  68. Slobodkin LB (1962) Energy in animal ecology. Adv Ecol Res 1:69–101. doi: 10.1016/S0065-2504(08)60301-3
  69. Smith ADM, Brown CJ, Bulman CM et al (2011) Impacts of fishing low-trophic level species on marine ecosystems. Science 333:1147–1150CrossRefGoogle Scholar
  70. Swartz W, Sala E, Tracey S et al (2010) The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5:e15143CrossRefGoogle Scholar
  71. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158CrossRefGoogle Scholar
  72. Troell M, Tyedmers P, Kautsky N, Rönnbäck P (2004) Aquaculture and energy use. Encycl Energy 2:97–108CrossRefGoogle Scholar
  73. Troell M, Naylor RL, Metian M et al (2014) Does aquaculture add resilience to the global food system? Proc Natl Acad Sci 111:13257–13263CrossRefGoogle Scholar
  74. Tyedmers P (2001) Energy consumed by North Atlantic fisheries. Fisheries Impacts on North Atlantic Ecosystems: Catch, Effort, and National/Regional Data Sets. Fisheries Centre, University of British Columbia: Vancouver, British Columbia, pp 12–34Google Scholar
  75. Vázquez-Rowe I, Moreira MT, Feijoo G (2012) Inclusion of discard assessment indicators in fisheries life cycle assessment studies. Expanding the use of fishery-specific impact categories. Int J Life Cycle Assess 17:535–549CrossRefGoogle Scholar
  76. Vázquez-Rowe I, Villanueva-Rey P, Hospido A et al (2014) Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain). Sci Total Environ 475C:48–60CrossRefGoogle Scholar
  77. Vitousek P, Ehrlich P, Ehrlich A, Matson P (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373CrossRefGoogle Scholar
  78. Wackernagel M, Rees W (1996) Our ecological footprint: reducing human impact on the Earth. Our Ecol Footpr. doi: 10.1162/jiec.1999.3.2-3.185 Google Scholar
  79. Watson R, Zeller D, Pauly D (2014) Primary productivity demands of global fishing fleets. Fish Fish 15:231–241CrossRefGoogle Scholar
  80. Weidema BP, Schmidt JH (2010) Avoiding allocation in life cycle assessment revisited. J Ind Ecol 14:192–195CrossRefGoogle Scholar
  81. Weinzettel J (2012) Understanding who is responsible for pollution: what only the market can tell us—comment on “an ecological economic critique of the use of market Information in life cycle assessment research.”. J Ind Ecol 16:455–456CrossRefGoogle Scholar
  82. Welch A, Hoenig R, Stieglitz J et al (2010) From fishing to sustainable farming of carnivorous marine finfish. Rev Fish Sci 18:235–247CrossRefGoogle Scholar
  83. Wilfart A, Prudhomme J, Blancheton J-P, Aubin J (2013) LCA and emergy accounting of aquaculture systems: towards ecological intensification. J Environ Manage 121:96–109CrossRefGoogle Scholar
  84. Worm B, Barbier EB, Beaumont N et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790CrossRefGoogle Scholar
  85. Worm B, Hilborn R, Baum JK et al (2009) Rebuilding global fisheries. Science 325:578–585CrossRefGoogle Scholar
  86. Ytrestøyl T, Aas TST, Berge GGM, et al (2011) Resource utilisation and eco-efficiency of Norwegian salmon farming in 2010. SINTEF: Tromso, Norway. Retrieved from:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tim Cashion
    • 1
    Email author
  • Sara Hornborg
    • 2
  • Friederike Ziegler
    • 2
  • Erik Skontorp Hognes
    • 3
  • Peter Tyedmers
    • 1
  1. 1.School for Resource and Environmental StudiesDalhousie UniversityHalifaxCanada
  2. 2.Food and BioscienceSP Technical Research Institute of SwedenGöteborgSweden
  3. 3.SINTEF Fisheries and AquacultureTrondheimNorway

Personalised recommendations