Amor MB, Gaudreault C, Pineau P-O, Samson R (2014) Implications of integrating electricity supply dynamics into life cycle assessment: a case study of renewable distributed generation. Renew Energ 69:410–419
Article
Google Scholar
Arvesen A, Hertwich E (2015) More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energ Policy 76:1–6
Article
Google Scholar
Bauer C, Hofer J, Althaus H-J, Del Duce A, Simons A (2015) The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework. Appl Energy
Bouman EA, Ramirez A, Hertwich E (2015) Multiregional environmental comparison of fossil fuel power generation—assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources. Int J Greenh Gas Con
Bourgault G, Lesage P, Samson R (2012) Systematic disaggregation: a hybrid LCI computation algorithm enhancing interpretation phase in LCA. Int J Life Cycle Assess 17:774–786
Article
Google Scholar
Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34:2116–2123
CAS
Article
Google Scholar
Ciroth A, Muller S, Weidema B, Lesage P (2013) Empirically based uncertainty factors for the pedigree matrix in ecoinvent. Int J Life Cycle Assess. doi:10.1007/s11367-013-0670-5
Google Scholar
Del Duce A, Gauch M, Althaus H-J (2014) Electric passenger car transport and passenger car life cycle inventories in ecoinvent version 3. Int J Life Cycle Assess. doi:10.1007/s11367-014-0792-4
Google Scholar
Earles J, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453
Article
Google Scholar
EC (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Luxembourg
Google Scholar
Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9:161–171
Article
Google Scholar
Finnveden G (1999) Methodological aspects of life cycle assessment of integrated solid waste management systems. Resour Conserv Recycl 26:173–187
Article
Google Scholar
Frischknecht R et al (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10:3–9
CAS
Article
Google Scholar
Heijungs R, Guinée J (2007) Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Manage 27:997–1005
Article
Google Scholar
Henriksson P, Zhang W, Guinée JB (2015) Updated unit process data for coal-based energy in China including parameters for overall dispersions. Int J Life Cycle Assess 20:185–195
CAS
Article
Google Scholar
Hertwich E et al (2014) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1312753111
Google Scholar
Hou Q, Mao G, Zhao L, Du H, Zuo J (2015) Mapping the scientific research on life cycle assessment: a bibliometric analysis. Int J Life Cycle Assess. doi:10.1007/s11367-015-0846-2
Google Scholar
ISO (2006a) ISO 14040. Environmental management—life cycle assessment—principles and framework. International Organisation for Standardisation (ISO)
ISO (2006b) ISO 14044. Environmental management—life cycle assessment—requirements and guidelines. International Organisation for Standardisation (ISO)
Laurent A, Espinosa N (2015) Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: what can we learn for future energy planning? Energy Environ Sci 8:689–701
Article
Google Scholar
Lesage P, Samson R (2013) The Quebec Life Cycle Inventory Database Project. Int J Life Cycle Assess. doi:10.1007/s11367-013-0593-1
Google Scholar
Levova T (2013) Water Use Modelling With ecoinvent v3 Opens New Possibilities. LCA XIII, Orlando, September 30th - October 3rd 2013
Google Scholar
Masanet E et al (2013) Life-cycle assessment of electric power systems. Annu Rev Environ Resour 38:107–136
Article
Google Scholar
Meinshausen I, Müller-Beilschmidt P, Viere T (2014) The EcoSpold 2 format—why a new format? Int J Life Cycle Assess. doi:10.1007/s11367-014-0789-z
Google Scholar
Muller S, Lesage P, Ciroth A, Mutel C, Weidema B, Samson R (2014) The application of the pedigree approach to the distributions foreseen in ecoinvent v3. Int J Life Cycle Assess. doi:10.1007/s11367-014-0759-5
Google Scholar
Mutel CL, Hellweg S (2009) Regionalized life cycle assessment: computational methodology and application to inventory databases. Environ Sci Technol 43:5797–5803
CAS
Article
Google Scholar
Mutel C, Pfister S, Hellweg S (2012) GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. Environ Sci Technol 46:1096–1103
CAS
Article
Google Scholar
Mutel C, de Baan L, Hellweg S (2013) Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study. Environ Sci Technol 47:5660–5667
CAS
Article
Google Scholar
Nemecek T, Schnetzer J, Reinhard J (2014) Updated and harmonised greenhouse gas emissions for crop inventories. Int J Life Cycle Assess. doi:10.1007/s11367-014-0712-7
Google Scholar
OGC (2014) KML—Keyhole Markup Language version 2.2. Open Geospatial Consortium, Wayland
Google Scholar
Pehnt M, Oeser M, Swider DJ (2008) Consequential environmental system analysis of expected offshore wind electricity production in Germany. Energy 33:747–759
Article
Google Scholar
Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104
CAS
Article
Google Scholar
Potting J, Hauschild M (1997) Spatial differentiation in life-cycle assessment via the site-dependent characterisation of environmental impact from emissions. Int J Life Cycle Assess 2:209–216
Article
Google Scholar
Potting J, Hauschild M (2006) Spatial differentiation in life cycle impact assessment: a decade of method development to increase the environmental realism of LCIA. Int J Life Cycle Assess 11:11–13
Article
Google Scholar
Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Clean Prod 17(suppl 1):S46–S56
CAS
Article
Google Scholar
Scharlemann JPW, Laurance WF (2008) Environmental science: how green are biofuels? Science 319:43–44
CAS
Article
Google Scholar
Simons A (2013) Road transport: new life cycle inventories for fossil-fuelled passenger cars and non-exhaust emissions in ecoinvent v3. Int J Life Cycle Assess. doi:10.1007/s11367-013-0642-9
Google Scholar
Simons A, Bauer C (2012) Life cycle assessment of the European pressurized reactor and the influence of different fuel cycle strategies. Proc Inst Mech Eng, Part A: J Power Energy 226:427–444
CAS
Article
Google Scholar
Sternberg A, Bardow A (2015) Power-to-What?—environmental assessment of energy storage systems. Energy Environ Sci 8:389–400
CAS
Article
Google Scholar
Steubing B, Wernet G, Reinhard J, Bauer C, Moreno E (2016) The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. Int J Life Cycle Assess. doi:10.1007/s11367-016-1109-6
Stoessel F, Juraske R, Pfister S, Hellweg S (2012) Life cycle inventory and carbon and water foodprint of fruits and vegetables: application to a Swiss retailer. Environ Sci Technol 46:3253–3262
CAS
Article
Google Scholar
Suh S, Yang Y (2014) On the uncanny capabilities of consequential LCA. Int J Life Cycle Assess 19:1179–1184
Article
Google Scholar
Suh S, Leighton M, Tomar S, Chen C (2013) Interoperability between ecoinvent ver. 3 and US LCI database: a case study. Int J Life Cycle Assess. doi:10.1007/s11367-013-0592-2
Google Scholar
Swiss Confederation (2014) SR 641.611 - Mineralölsteuerverordnung. Swiss Confederation, Bern
Google Scholar
The ecoinvent LCA database, v3.1, “cut-off by classification” (2014) The ecoinvent center. www.ecoinvent.org
Tillman A-M (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20:113–123
Article
Google Scholar
Tonini D, Hamelin L, Wenzel H, Astrup T (2012) Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Environ Sci Technol 46:13521–13530
Article
Google Scholar
Treyer K, Bauer C (2013) Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—part I: electricity generation. Int J Life Cycle Assess. doi:10.1007/s11367-013-0665-2
Google Scholar
Treyer K, Bauer C (2014) Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—part II: electricity markets. Int J Life Cycle Assess. doi:10.1007/s11367-013-0694-x
Google Scholar
Treyer K, Bauer C, Simons A (2014) Human health impacts in the life cycle of future European electricity generation. Energ Policy 74:S31–S44
Article
Google Scholar
Turconi R, Tonini D, Nielsen CFB, Simonsen CG, Astrup T (2014) Environmental impacts of future low-carbon electricity systems: detailed life cycle assessment of a Danish case study. Appl Energy 132:66–73
Article
Google Scholar
Volkart K, Bauer C, Boulet C (2013) Life cycle assessment of carbon capture and storage in power generation and industry in Europe. Int J Greenh Gas Con 16:91–106
CAS
Article
Google Scholar
von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6:2721–2734
Article
Google Scholar
Wegener Sleeswijk A, Heijungs R (2010) GLOBOX: a spatially differentiated global fate, intake and effect model for toxicity assessment in LCA. Sci Total Environ 408:2817–2832
CAS
Article
Google Scholar
Weidema B (2014) Has ISO 14040/44 failed its role as a standard for life cycle assessment? J Ind Ecol 18:324–326
Article
Google Scholar
Weidema B, Ekvall T, Heijungs R (2009) Guidelines for application of deepened and broadened LCA. ENEA, The Italian National Agency on new technologies, energy and the environment
Weidema BP et al (2013) Overview and methodology. Data quality guideline for the ecoinvent database version 3. The ecoinvent Centre, St. Gallen
Google Scholar
Wernet G, Conradt S, Isenring H, Jiménez-González C, Hungerbühler K (2010) Life cycle assessment of fine chemical production: a case study of pharmaceutical synthesis. Int J Life Cycle Assess 15:294–303
CAS
Article
Google Scholar
Wernet G, Mutel C, Hellweg S, Hungerbühler K (2011) The environmental importance of energy use in chemical production. J Ind Ecol 15:96–107
CAS
Article
Google Scholar
Wernet G, Hellweg S, Hungerbühler K (2012) A tiered approach to estimate inventory data and impacts of chemical products and mixtures. Int J Life Cycle Assess 17:720–728
CAS
Article
Google Scholar
Yue D, You F, Darling SB (2014) Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: life cycle energy and environmental comparative analysis. Sol Energy 105:669–678
Article
Google Scholar
Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918
Article
Google Scholar