Social life cycle assessment: in pursuit of a framework for assessing wood-based products from bioeconomy regions in Germany

  • Anke Siebert
  • Alberto Bezama
  • Sinéad O’Keeffe
  • Daniela Thrän



With many policies in Germany steering towards a bioeconomy, there is a need for analytical tools that assess not only the environmental and economic implications but also the social implications of a transition to a bioeconomy. Wood is expected to become a major biomass resource in bioeconomy regions. Therefore, this paper develops a social life cycle assessment (sLCA) framework that can be applied specifically to a wood-based production system in one of Germany’s bioeconomy regions.


This paper reviews and analyses existing sLCA approaches, in terms of how applicable they are for assessing a wood-based production system in a German bioeconomy regional context. The analysis is structured according to the standard phases of environmental life cycle assessment (LCA). However, we use the term social effects rather than social impacts, to acknowledge the unknown cause–effect relationship between an organisation’s activities and its social impacts. We also consider the establishment of regional system boundaries, as well as the relationship between the social effects and the product being assessed. Additionally, an approach for the development and selection of social indicators and indices is outlined. Furthermore, we discuss data requirements and present an approach for a social life cycle impact assessment method.

Results and discussion

A new conceptual framework for a context-specific sLCA to assess wood-based products manufactured in a bioeconomy region was developed. It enables sLCA practitioners to identify “social hotspots” and “social opportunities” from a regional perspective. The location and characteristics of these social hotspots and opportunities can be analysed, in particular, for major production activities in a bioeconomy region in Germany. Therefore, according to this framework, the development of social indices and indicators, the collection of data and the approach used for characterising social effects need to relate to the geographical context of the product being assessed. The proposed framework can, thus, help to identify, monitor and evaluate the social sustainability of wood-based bioeconomy chains in a regional context.


This framework requires a high level of detail in the social inventory and impact assessment phase, in order to assess the regional foreground activities in a German wood-based bioeconomy region. It enables sLCA studies to identify which social hotspots and social opportunities occur and where they are located in the wood-based production system of a regional bioeconomy.


Bioeconomy region Framework sLCA site-specific Social life cycle assessment Wood-based products 



The authors gratefully thank the German Federal Ministry of Education and Research for their financial support.


  1. (BMBF) Federal Ministry of Education and Research (2011) National research strategy BioEconomy 2030. Accessed 6 June 2015
  2. (BMELV) Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2013) Politikstrategie Bioökonomie: Nachwachsende Ressourcen und biotechnologische Verfahren als Basis für Ernährung, Industrie und Energie. Accessed 12 Jan 2014
  3. (EC) European Commission (2012) Innovating for sustainable growth. A bioeconomy for Europe. Accessed 14 July 2015
  4. (GRI) Global Reporting Initiative (2011) Sustainability reporting guidelinesGoogle Scholar
  5. (SAI) SAI SA8000 (2008) Social accountability 8000Google Scholar
  6. (SMUL) Sächsisches Staatsministerium für Umwelt und Landwirtschaft (2013) Sachsen hat Zukunft: Nachhaltigkeitsstrategie für den Freistaat Sachsen. Accessed 10 December 2014Google Scholar
  7. Benoît C, Norris GA, Valdivia S, Ciroth A, Moberg A, Bos U, Prakash S, Ugaya C, Beck T (2010) The guidelines for social life cycle assessment of products: just in time! Int J Life Cycle Assess 15(2):156–163CrossRefGoogle Scholar
  8. Benoît-Norris C, Norris GA, Aulisio D (2014) Efficient assessment of social hotspots in the supply chains of 100 product categories using the social hotspots database. Sustainability 6(10):6973–6984CrossRefGoogle Scholar
  9. Brent A, Labuschagne C (2006) Social indicators for sustainable project and technology life cycle management in the process industry. Int J Life Cycle Assess 11(1):3–15CrossRefGoogle Scholar
  10. Chang Y, Sproesser G, Neugebauer S, Wolf K, Scheumann R, Pittner A, Rethmeier M, Finkbeiner M (2015) Environmental and social life cycle assessment of welding technologies. Procedia CIRP 26:293–298CrossRefGoogle Scholar
  11. Ciroth A, Franze J (2011) LCA of an ecolabeled notebook: consideration of social and environmental impacts along the entire life cycle. GreenDeltaTC GmbH, BerlinGoogle Scholar
  12. DIN ISO 26000 (2010) Guidance on social responsibilityGoogle Scholar
  13. Dreyer LC, Hauschild MZ, Schierbeck J (2006) A framework for social life cycle impact assessment. Int J Life Cycle Assess 11(2):88–97CrossRefGoogle Scholar
  14. Dreyer LC, Hauschild MZ, Schierbeck J (2010a) Characterisation of social impacts in LCA. Int J Life Cycle Assess 15(3):247–259CrossRefGoogle Scholar
  15. Dreyer LC, Hauschild MZ, Schierbeck J (2010b) Characterisation of social impacts in LCA. Part 2: implementation in six company case studies. Int J Life Cycle Assess 15(4):385–402CrossRefGoogle Scholar
  16. Ekener-Petersen E, Finnveden G (2013) Potential hotspots identified by social LCA – part 1: a case study of a laptop computer. Int J Life Cycle Assess 18(1):127–143CrossRefGoogle Scholar
  17. Esteves AM, Franks D, Vanclay F (2012) Social impact assessment: the state of the art. Impact Assess Proj Apprais 30(1):34–42CrossRefGoogle Scholar
  18. Feschet P, Garrabé M (2013) Social LCA and sustainable development. In: Macombe C (ed) Social LCAs: socio-economic effects in value chains. FruiTrop, MontpellierGoogle Scholar
  19. Foolmaun RK, Ramjeeawon T (2013) Comparative life cycle assessment and social life cycle assessment of used polyethylene terephthalate (PET) bottles in Mauritius. Int J Life Cycle Assess 18(1):155–171CrossRefGoogle Scholar
  20. Franze J, Ciroth A (2011) A comparison of cut roses from Ecuador and the Netherlands. Int J Life Cycle Assess 16(4):366–379CrossRefGoogle Scholar
  21. Fuchs M, Rauscher C, Weyh A (2014) Die regionalen Unterschiede in Deutschland sind groß. IAB-KurzberichtGoogle Scholar
  22. Halog A, Manik Y (2011) Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability 3(12):469–499CrossRefGoogle Scholar
  23. Hauschild MZ, Dreyer LC, Jørgensen A (2008) Assessing social impacts in a life cycle perspective—lessons learned. CIRP Ann Manuf Technol 57(1):21–24CrossRefGoogle Scholar
  24. Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Eco-efficiency in industry and science, vol 11. Kluwer Acad. Publ, DordrechtCrossRefGoogle Scholar
  25. Hosseinijou SA, Mansour S, Shirazi MA (2014) Social life cycle assessment for material selection: a case study of building materials. Int J Life Cycle Assess 19(3):620–645CrossRefGoogle Scholar
  26. Hunkeler D (2006) Societal LCA methodology and case study. Int J Life Cycle Assess 11(6):371–382CrossRefGoogle Scholar
  27. Jørgensen A, Le Bocq A, Nazarkina L, Hauschild M (2008) Methodologies for social life cycle assessment. Int J Life Cycle Assess 13(2):96–103CrossRefGoogle Scholar
  28. Kies U, Klein D, Schulte A (2010) Germany's forest cluster: exploratory spatial data analysis of regional agglomerations and structural change in wood-based employment- primary wood processing. Forstarchiv 81(6):233–272Google Scholar
  29. Kircher M (2012) The transition to a bio-economy: national perspectives. Biofuels Bioprod Bioref 6(3):240–245CrossRefGoogle Scholar
  30. Klöpffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13(2):89–95CrossRefGoogle Scholar
  31. Lehmann A, Russi D, Bala A, Finkbeiner M, Fullana-i-Palmer P (2011) Integration of social aspects in decision support, based on life cycle thinking. Sustainability 3(12):562–577CrossRefGoogle Scholar
  32. Macombe C (ed) (2013) Social LCAs: socio-economic effects in value chains. FruiTrop, MontpellierGoogle Scholar
  33. Macombe C, Leskinen P, Feschet P, Antikainen R (2013) Social life cycle assessment of biodiesel production at three levels: a literature review and development needs. J Clean Prod 52:205–216CrossRefGoogle Scholar
  34. Martínez-Blanco J, Lehmann A, Muñoz P, Antón A, Traverso M, Rieradevall J, Finkbeiner M (2014) Application challenges for the social life cycle assessment of fertilizers within life cycle sustainability assessment. J Clean Prod 69:34–48CrossRefGoogle Scholar
  35. Mathe S (2014) Integrating participatory approaches into social life cycle assessment: the SLCA participatory approach. Int J Life Cycle Assess 19(8):1506–1514CrossRefGoogle Scholar
  36. Müller K, Knierim A (2012) Bioökonomie und der Mensch. Biol Unserer Zeit 42(2):123–128CrossRefGoogle Scholar
  37. O’Keeffe S, Majer S, Bezama A, Thrän D (2016) When considering no man is an Island - assessing bioenergy systems in a regional and LCA context: a review. Int J Life Cycle Assess. doi: 10.1007/s11367-016-1057-1 Google Scholar
  38. Paragahawewa U, Blackett P, Bruce S (2009) Social life cycle analysis (S-LCA). Some methodological issues and potential application to cheese production in New ZealandGoogle Scholar
  39. Parent J, Cucuzzella C, Revéret J (2013) Revisiting the role of LCA and SLCA in the transition towards sustainable production and consumption. Int J Life Cycle Assess 18(9):1642–1652CrossRefGoogle Scholar
  40. Petti L, Lie Ugaya CM, Di Cesare S (2014) Systematic review of social-life cycle assessment (S-LCA) case studies. In: Macombe C, Loeillet D (eds) Social LCA in progress. FruiTrop, MontpellierGoogle Scholar
  41. Ramirez PKS, Petti L, Haberland NT, Ugaya CML (2014) Subcategory assessment method for social life cycle assessment. Part 1: methodological framework. Int J Life Cycle Assess 19(8):1515–1523CrossRefGoogle Scholar
  42. Raschka A, Carus M (2012) Stoffliche Nutzung von Biomasse: Basisdaten für Deutschland. Europa und die Welt, HürthGoogle Scholar
  43. Reitinger C, Dumke M, Barosevcic M, Hillerbrand R (2011) A conceptual framework for impact assessment within SLCA. Int J Life Cycle Assess 16(4):380–388Google Scholar
  44. Revéret J, Couture J, Parent J (2015) Socioeconomic LCA of milk production in Canada. In: Muthu SS (ed) Social life cycle assessment: an insight. Springer, SingaporeGoogle Scholar
  45. Schmidt I, Meurer M, Saling P, Kicherer A, Reuter W, Gensch C (2004) SEEbalance - managing sustainability of products and processes with the socio-eco-efficiency analysis by BASF, 45th ednGoogle Scholar
  46. Statistisches Bundesamt (2014) Nachhaltige Entwicklung in Deutschland Indikatorenbericht 2014. Accessed 26 June 2015
  47. Swarr TE (2009) Societal life cycle assessment—could you repeat the question? Int J Life Cycle Assess 14(4):285–289CrossRefGoogle Scholar
  48. UNEP-SETAC (2009) Guidelines for social life cycle assessment of products. United Nations Environment Programme, ParisGoogle Scholar
  49. Zamagni A, Amerighi O, Buttol P (2011) Strengths or bias in social LCA? Int J Life Cycle Assess 16(7):596–598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anke Siebert
    • 1
  • Alberto Bezama
    • 1
  • Sinéad O’Keeffe
    • 1
  • Daniela Thrän
    • 1
    • 2
  1. 1.Department of BioenergyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  2. 2.Bioenergy Systems DepartmentDeutsches Biomasseforschungszentrum (DBFZ)LeipzigGermany

Personalised recommendations