LCA in architectural design—a parametric approach

  • Alexander HollbergEmail author
  • Jürgen Ruth



Life cycle assessment (LCA) has not been widely applied in the building design process because it is perceived to be complex and time-consuming. There is a high demand for simplified approaches that architects can use without detailed knowledge of LCA. This paper presents a parametric LCA approach, which allows architects to efficiently reduce the environmental impact of building designs.


First, the requirements for design-integrated LCA are analyzed. Then, assumptions to simplify the required data input are made and a parametric model is established. The model parametrizes all input, including building geometry, materials, and boundary conditions, and calculates the LCA in real time. The parametric approach possesses the advantage that input parameters can be adjusted easily and quickly. The architect has two options to improve the design: either through manually changing geometry, building materials, and building services, or through the use of an optimization solver. The parametric model was implemented in a parametric design software and applied using two cases: (a) the design of a new multi-residential building, and (b) retrofitting of a single-family house.

Results and discussion

We have successfully demonstrated the capability of the approach to find a solution with minimum environmental impact for both examples. In the first example, the parametric method is used to manually compare geometric design variants. The LCA is calculated based on assumptions for materials and building services. In the second example, evolutionary algorithms are employed to find the optimum combination of insulation material, heating system, and windows for retrofitting. We find that there is not one optimum insulation thickness, but many optima, depending on the individual boundary conditions and the chosen environmental indicator.


By incorporating a simplified LCA into the design process, the additional effort of performing LCA is minimized. The parametric approach allows the architect to focus on his main task of designing the building and finally makes LCA practically useful for design optimization. In the future, further performance analysis capabilities such as life cycle costing can also be integrated.


Architectural design process Optimization Parametric design Simplified LCA Sustainable building 



Environmental impact


Energy demand (kWh)


Mass (kg)


Number of replacements


Reference service period (of the building) (a)


Reference service life (of a building component) (a)


Environmental impact factor


Performance factor of a building service


Total primary energy (MJ)


Total renewable primary energy (MJ)


Total non-renewable primary energy (MJ)


Global warming potential for a time horizon of 100 years (kg CO2-eqv.)


Eutrophication potential (kg R11-eqv.)


Acidification potential (kg SO2-eqv.)


Ozone layer depletion potential (kg PO4 3−-eqv.)


Photochemical ozone creation potential (kg C2H4-eqv.)


Abiotic resource depletion potential for elements (kg Sb-eqv.)



Life cycle








Building envelope


Primary structure



This study was carried out as part of the research project FOGEB, funded by the Thuringian Ministry for Economics, Labour and Technology and the European Social Funds (ESF), and the project “Integrated Life Cycle Optimization,” funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety through the research initiative ZukunftBau.


  1. Antón LÁ, Díaz J (2014) Integration of LCA and BIM for sustainable construction. Int J Soc Manag Econ Bus Eng 8:1345–1349Google Scholar
  2. Robert McNeel & Associates (2015) Rhinoceros3D. Available at: [Accessed August 8, 2015]
  3. Aurélio M, Benetto E, Koster D (2011) Environmental life cycle assessment and optimization of buildings. In LCM 2011Google Scholar
  4. Baitz M, Albrecht S, Brauner E, Broadbent C, Castellan G, Conrath P, Fava J, Finkbeiner M, Fischer M, i Palmer PF, Krinke S, Leroy C, Loebel O, McKeown P, Mersiowsky I, Möginger B, Pfaadt M, Rebitzer G, Rother E, Ruhland K, Schanssema A, Tikana L (2012) LCA’s theory and practice: like ebony and ivory living in perfect harmony? Int J Life Cycle Assess 18(1):5–13Google Scholar
  5. Basbagill J, Flager F, Lepech M, Fischer M (2013) Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build Environ 60:81–92Google Scholar
  6. Bates R, Carlisle S, Faircloth B, Welch R (2013) Quantifying the Embodied Environmental Impact of Building Materials During Design: A Building Information Modeling Based Methodology. In PLEA. Munich, pp 1–6Google Scholar
  7. BauO Bln (2011) Landesbauordnung Berlin, Germany. Available at: [Accessed August 8, 2015]
  8. BBSR (2014) eLCA. Available at: [Accessed August 8, 2015]
  9. BBSR (2015a) ökobau.dat. Bundesinstitut für Bau-, Stadt- und Raumforschung Available at: [Accessed August 8, 2015]
  10. BBSR (2015b) BNB system. Bundesinstitut für Bau-, Stadt- und Raumforschung. Available at: [Accessed April 4, 2015]
  11. Bigalke U, Discher H, Lukas H, Zeng Y, Bensmann K, Stolte C (2012) Der dena-Gebäudereport 2012. Statistiken und Analysen zur Energieeffizienz im GebäudebestandGoogle Scholar
  12. Bundesgesetzblatt (2013). Verordnung über energiesparenden Wärmeschutz und energiesparender Anlagentechnik bei Gebäuden - EnEV, DeutschlandGoogle Scholar
  13. CEN/TC 350 (2012) DIN EN 15978: Nachhaltigkeit von Bauwerken – Bewertung der umweltbezogenen Qualität von Gebäuden. , pp 1–62Google Scholar
  14. Collinge WO, Landis AE, Jones AK, Schaefer La, Bilec MM (2013) Dynamic life cycle assessment: framework and application to an institutional building. Int J Life Cycle Assess 18(3):538–552Google Scholar
  15. Davis D (2013) Modelled on Software Engineering : Flexible Parametric Models in the Practice of Architecture. RMIT University. Available at:
  16. DGNB (2015) DGNB system. Available at: [Accessed April 4, 2015]
  17. DIN (2011) DIN V 18599-2 Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwasser und Beleuchtung - Teil 2: Nutzenergiebedarf für Heizen und Kühlen von Gebäudezonen, p111Google Scholar
  18. DOE (2015) EnergyPlus V8.3. U.S. Department of Energy. Available at: [Accessed April 4, 2015]
  19. Ekkerlein C (2004) Ökologische Bilanzierung von Gebäuden in frühen Planungsphasen auf Basis der Produktmodellierung. Technische Universität MünchenGoogle Scholar
  20. El Khouli S, John V, Zeumer M (2014) Nachhaltig Konstruieren Detail Green, Institut für Internationale Architektur-DokumentationGoogle Scholar
  21. EnEV (2013) Energieeinsparverordnung - Nichtamtliche Lesefassung zur Zweiten Verordnung zur Änderung der Energieeinsparverordnung vom 18. November 2013, pp 1–90Google Scholar
  22. EU (2010) DIRECTIVE 2010/31/EU on the energy performance of buildings, Available at: [Accessed August 2, 2015]
  23. Flager F, Basbagill J, Lepech M, Fischer M (2012) Multi-objective building envelope optimization for life-cycle cost and global warming potential. In eWork and eBusiness in Architecture, Engineering and Construction (pp. 193–200). CRC Press. doi: 10.1201/b12516-32
  24. Floery S (2015) Goat. Available at: [Accessed March 3, 2015]
  25. Frenzel C, Hiller M (2014) TRNSYSLIZARD – Open Source Tool Für Rhinocerus – Grasshopper. In Fifth German-Austrian IBPSA Conference, pp 490–496Google Scholar
  26. Fuchs M, Hartmann F, Henrich J, Wagner C, Zeumer M (2013) SNAP Systematik für Nachhaltigkeitsanforderungen in Planungswettbewerben - Endbericht. BerlinGoogle Scholar
  27. Heeren N, Mutel CL, Steubing B, Ostermeyer Y, Wallbaum H, Hellweg S (2015) Environmental Impact of Buildings—What Matters? Environ Sci Technol 49(16):9832–9841. Available at:
  28. Hegger M et al (2007) Energie Atlas: Nachhaltige Architektur. Birkhäuser, BaselCrossRefGoogle Scholar
  29. Hildebrand L (2014) Strategic investment of embodied energy during the architectural planning process. ISBN 9461863268Google Scholar
  30. Hollberg A, Ruth J (2014) A Parametric Life Cycle Assessment Model for Facade Optimization. In Building Simulation and Optimization. LondonGoogle Scholar
  31. Hollberg A et al (2016) Application of a parametric real-time LCA tool in students’ design projects. In Sustainable Built Environment. HamburgGoogle Scholar
  32. Jakubiec JA, Reinhart CF (2011) Diva 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus. In Proceedings of IBPSA. Sydney, AustraliaGoogle Scholar
  33. Johnson SG (2010) The NLopt nonlinear-optimization package. Available at: [Accessed March 3, 2015]
  34. Kaelo P, Ali MM (2006) Some variants of the controlled random search algorithm for global optimization. J Optimiz Theory App 130(2):253–264CrossRefGoogle Scholar
  35. Kellenberger D, Althaus H-J (2009) Relevance of simplifications in LCA of building components. Build Environ 44(4):818–825CrossRefGoogle Scholar
  36. Klüber N, Hollberg A, Ruth J (2014) Life cycle optimized application of renewable raw materials for retrofitting measures. In: World Sustainable Building. BarcelonaGoogle Scholar
  37. Lasvaux S, Gantner J (2013) Towards a new generation of building LCA tools adapted to the building design process and to the user needs? In: Sustainable Building. Graz, pp 406–417Google Scholar
  38. Lasvaux S, Gantner J, Saunders T (2012) Requirements for building LCA tool developers, Available at: [Accessed August 8, 2015]
  39. Lichtenheld T, Hollberg A, Klüber N (2015) Echtzeitenergieanalyse für den parametrischen Gebäudeentwurf. In Bauphysiktage Kaiserslautern. Kaiserslautern: Technische Universität KaiserslauternGoogle Scholar
  40. Lützkendorf T et al (2015) Net-zero buildings: incorporating embodied impacts. Build Res Inf 43(1):62–81CrossRefGoogle Scholar
  41. McLeod R, Mead K. Standen M (2015) Passivhaus primer: Designer’s guide, Available at: [Accessed August 8, 2015]
  42. Nembrini J, Samberger S, Labelle G (2014) Parametric scripting for early design performance simulation. Energ Build 68(PART C):786–798Google Scholar
  43. Neuberg, F., (2004) Ein Softwarekonzept zur Internet-basierten Simulation des Ressourcenbedarfs von Bauwerken. Technische Universität MünchenGoogle Scholar
  44. Ostermeyer Y, Wallbaum H, Reuter F (2013) Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. Int J Life Cycle Assess 18(9):1762–1779CrossRefGoogle Scholar
  45. Passer A, Kreiner H, Maydl P (2012) Assessment of the environmental performance of buildings: a critical evaluation of the influence of technical building equipment on residential buildings. Int J Life Cycle Assess 17(9):1116–1130CrossRefGoogle Scholar
  46. Passer A, Lasvaux S, Allacker K, De Lathauwer D, Spirinckx C, Wittstock B, Kellenberger D, Gschösser F, Wall J, Wallbaum H (2015) Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries. Int J Life Cycle Assess 20(9):1199–1212Google Scholar
  47. Rittel HW, Reuter WD (1992) Planen, Entwerfen, DesignGoogle Scholar
  48. Roudsari MS, Smith A, Gill G (2013) Ladybug: A parametric Environmental Plugin for Grasshopper to held designers environmentally conscious design. In: Building Simulation (IBPSA). Chambéry, France, p 8Google Scholar
  49. Rutten, D., 2015. Grasshopper3D. Available at:[Accessed November 11, 2015]
  50. Seo S, Tucker S, Newton P (2007) Automated material selection and environmental assessment in the context of 3D building modelling. J Green Build 2(2):51–61CrossRefGoogle Scholar
  51. Szalay A, Zöld Z (2007) What is missing from the concept of the new European Building Directive? Build Environ 42:1761–1769CrossRefGoogle Scholar
  52. Szalay Z, Váraljai E, Csík Á, Csoknyai T (2014) Life Cycle Based Optimization of Building Design. In: World Sustainable Building. Barcelona, pp 17–23Google Scholar
  53. TRNSYS (2015) TRNSYS. Thermal Energy System Specialists, LLC. Available at: Available at: [Accessed April 4, 2015]
  54. UNEP SBCI (2009) Buildings and Climate Change Summary for Decision-MakersGoogle Scholar
  55. Weißenberger M, Jensch W, Lang W (2014) The convergence of life cycle assessment and nearly zero-energy buildings: the case of Germany. Energ Build 76:551–557CrossRefGoogle Scholar
  56. Wittstock B, Albrecht S, Makishi Colodel C, Lindner JP, Hauser G, Sedlbauer K (2009) Gebäude aus Lebenszyklusperspektive − Ökobilanzen im Bauwesen. Bauphysik, 31Google Scholar
  57. Zabalza Bribián I, Aranda Usón A, Scarpellini S (2009) Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 44(12):2510–2520CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chair of Structural DesignBauhaus University WeimarWeimarGermany

Personalised recommendations