A comparative life cycle assessment of the sugarcane value chain in the province of Tucumán (Argentina) considering different technology levels

Abstract

Purpose

The purpose of this work is to quantify the environmental impact of the sugarcane industry in Tucumán (Argentina) through the life cycle analysis (LCA). The distinctive feature is the consideration of different technology levels (TLs) in the agricultural stage: high (HTL), medium (MTL), and low (LTL).

Methods

The scope of the study covers the agricultural and industrial stages through a “from cradle to gate” approach (from sugarcane cultivation until production of finished products: sugar and alcohol). The system is divided into Agriculture, Sugar Factory, and Distillery. Data used for the inventory are mainly provided by local experts, sugarcane growers, and processing companies. The characteristics of each TL are taken from a regional classification. For the impact assessment, the CML 2001 model (nine impact categories) is used.

Results and discussion

Regardless of the TL, in most of the impact categories, an important contribution attributable to the use of synthetic agrochemicals is evident. As for the comparison among TLs, the ethanol produced with HTL has less impact values than the ones produced with MTL and LTL in seven categories. These results can be mainly explained by the better cultural yields obtained with HTL, and to the fact that sugarcane is not burnt before harvesting in HTL as it is in MTL and LTL.

Conclusions

This study explores the implications of using different TLs for the agricultural tasks on the sugarcane supply chain in Tucumán, which is characterized by a vertically nonintegrated productive scheme. If practices associated to HTL are implemented, a reduction of the environmental impact is observed in most categories. It is necessary to compare these results with economic and social implications to ensure sustainability of the sugarcane value chain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acreche MM, Valeiro AH (2013) Greenhouse gasses emissions and energy balances of a non-vertically integrated sugar and ethanol supply chain: a case study in Argentina. Energy 54:146–154

    CAS  Article  Google Scholar 

  2. Amores MJ, Mele FD, Jiménez L, Castells F (2013) Life cycle assessment of fuel ethanol from sugar cane in Argentina. Int J Life Cycle Assess 18:1344–1357

    CAS  Article  Google Scholar 

  3. Argentine Sugar Centre. Available at: www.centroazucarero.com.ar. Accessed May 1, 2015

  4. Beeharry RP (2001) Carbon balance of sugarcane bioenergy systems. Biomass Bioenerg 20:361–370

    CAS  Article  Google Scholar 

  5. Boddey RM, de B, Soares LE, Alves BJR, Urquiaga S (2008) Bio-ethanol production in Brazil. In: Pimentel D, editor. Biofuels, solar and wind as renewable energy systems. New York: Springer Science Business Media 321–356

  6. Cardoso Lisboa C, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases-known and unknowns. Glob Change Biol Bioenergy 3:277–292

    Article  Google Scholar 

  7. Cavalett O, Junqueira TL, Dias MOS, Jesus CDF, Mantelatto PE, Cunha MP, Franco H, Cardoso T, Maciel R, Rosell C, Bonomi A (2012) Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol Environ 14:399–410

    CAS  Article  Google Scholar 

  8. Cremonez PA, Feroldi M, Feiden A, Teleken JG, Gris DJ, Dieter J, De Rossi E, Antonelli J (2015) Current scenario and prospects of use of liquid biofuels in South America. Renew Sust Energ Rev 43:352–362. doi:10.1016/j.rser.2014.11.064

    Article  Google Scholar 

  9. Días de Oliveira ME, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances and ecological footprint. Bioscience 55:593–602

    Article  Google Scholar 

  10. Ecoinvent v3.1. Swiss Centre for Life-Cycle Inventories, 2014. Available at: www.ecoinvent.org

  11. EEAOC Estación Experimental Agroindustrial Obispo Colombres. Technical Report N° 103. Retrieved June 20, 2015, from http://www.eeaoc.org.ar/publicaciones/categoria/22/Reporte-Agroind.html

  12. FAO Food and Agriculture Organization of the United Nations (2013) Statistical Yearbook 2013 World Food and Agriculture, Rome

  13. Galdos M, Cavalett O, Seabra JEA, Horta Nogueira LA, Bonomi A (2013) Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Appl Energ 104:576–582. doi:10.1016/j.apenergy.2012.11.002

    CAS  Article  Google Scholar 

  14. Galdos MV, Cerri CC, Cerri CEP (2009) Soil carbon stocks under unburnt sugarcane in Brazil. Geoderma 153:347–352

    CAS  Article  Google Scholar 

  15. García CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energ 88:2088–2097

    Article  Google Scholar 

  16. Giancola SI, Morandi JL, Gatti N, Di Giano S, Dowbley V, Biaggi C (2012) Causas que afectan la adopción de tecnología en pequeños y medianos productores de caña de azúcar de la Provincia de Tucumán. Enfoque cualitativo. Ediciones INTA, Buenos Aires

  17. Guinée JB, Gorrée M, Heijungs R., Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, De Bruijn H, Van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. Part III: Scientific background. Kluwer Academic Publishers, Dordrecht

  18. INDEC, 2002, Censo Nacional Agropecuario. Retrieved November 3, 2015, from http://www.indec.gov.ar/ agropecuario/cna_principal.asp

  19. IPCC (2006) In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC guidelines for national greenhouse gas inventories, National Greenhouse Gas Inventories Programme. IGES, Hayama, Japan

    Google Scholar 

  20. ISO 14040 (2006a). Environmental management - Life cycle assessment: principles and framework. International Organisation for Standardisation, Geneva, Switzerland

  21. ISO 14044 (2006b) Environmental management - Life cycle assessment: requirements and guidelines. International Organisation for Standardisation, Geneva, Switzerland

  22. Jenjariyakosoln S, Gheewala SH, Sajjakulnukit B, Garivait S (2014) Energy and GHG emission reduction potential of power generation from sugarcane residues in Thailand. Energ Sust Dev 23:32–45. doi:10.1016/j.esd.2014.07.002

    Article  Google Scholar 

  23. Kostin AM, Guillén-Gosálbez G, Mele FD, Bagajewicz MJ, Jiménez L (2011a) A novel rolling horizon strategy for the strategic planning of supply chains. Application to the sugarcane industry of Argentina. Comput Chem Eng 35:2540–2563

    CAS  Article  Google Scholar 

  24. Kostin AM, Guillén-Gosálbez G, Mele FD, Bagajewicz MJ, Jiménez L (2011b) Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty. Chem Eng Res Des 90:359–376. doi:10.1016/j.cherd.2011.07.013

    Article  Google Scholar 

  25. Luo L, van der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sust Energ Rev 13:1613–1619

    CAS  Article  Google Scholar 

  26. Macedo IC (1998) Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil. Biomass Bioenerg 14:77–81

    Article  Google Scholar 

  27. Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenerg 32:582–595

    CAS  Article  Google Scholar 

  28. Mele FD, Kostin A, Guillén-Gosálbez G, Jiménez L (2011) Multiobjective model for more sustainable fuel supply chains. A case study of the sugarcane industry in Argentina. Ind Eng Chem Res 50:4939–4958

    CAS  Article  Google Scholar 

  29. Nemecek T, Heil A, Huguenin O, Meier S, Erzinger S, Blaser S, Dux D, Zimmermann A (2007) Life cycle inventories of agricultural production systems. Ecoinvent report No. 15, v2.0. Agroscope FAL Reckenholz and FAT Taenikon, Swiss Centre for Life Cycle Inventories, Dübendorf

  30. Nguyen TLT, Gheewala SH (2008) Life cycle assessment of fuel ethanol from cane molasses in Thailand. Int J Life Cycle Assess 13:301–311

    CAS  Article  Google Scholar 

  31. Nishihara Hun AL (2014) Análisis de Ciclo de Vida y estudio de sensibilidad paramétrica de la industria del azúcar y del bioetanol a partir de caña de azúcar. FACET, Universidad Nacional de Tucumán, MSc Thesis

    Google Scholar 

  32. Ometto AR, Hauschild MZ, Roma WNL (2009) Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14:236–247

    CAS  Article  Google Scholar 

  33. Portocarrero RA, Sopena RA, Valeiro AH (2011) Estimación del volumen de residuos de envases plásticos de agroquímicos generados por el cultivo de caña de azúcar en la provincia de Tucumán. Ciencia y Tecnología de los Cultivos Industriales-Caña de Azúcar 1:67–70

    Google Scholar 

  34. PRé Consultants. SimaPro® 8.0.3. 2014. Available at: www.pre-sustainability.com.

  35. Renouf MA, Pagan RJ, Wegener MK (2011) Life cycle assessment of Australian sugarcane products with a focus on cane processing. Int J Life Cycle Assess 16:125–137

    CAS  Article  Google Scholar 

  36. Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenerg 32:1144–1155

    CAS  Article  Google Scholar 

  37. Romero ER, Digonzelli PA, Scandaliaris J (2009) Manual del Cañero. Estación Experimental Agroindustrial Obispo Colombres, San Miguel de Tucumán

    Google Scholar 

  38. Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuel Bioprod Bior 5:519–532

    CAS  Article  Google Scholar 

  39. Secretaría de Energía de la Nación. Informe del Sector Eléctrico 2009 (Part 1). Available http:// energia3.mecon.gov.ar/contenidos/verpagina.php?idpagina = 3368. Accessed December 1 2014

  40. Smeets EMW, Bouwman LF, Stehfest E, Van Vuuren DP, Posthuma A (2009) Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Glob Chang Biol 15:1–23

    Article  Google Scholar 

  41. USDA United States Department of Agriculture. Foreign Agricultural Service. Sugar: World Markets and Trade. May 21, 2015. Retrieved June 4, 2015, from http://apps.fas.usda.gov/psdonline/circulars/Sugar.pdf

Download references

Acknowledgments

The authors wish to acknowledge financial support from the Universidad Nacional de Tucumán, the Argentine CONICET (PIP 112-201101-00785 project), and INTA (PNIND-1108074 project).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando Daniel Mele.

Additional information

Responsible editor: Ian Vázquez-Rowe

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishihara Hun, A.L., Mele, F.D. & Pérez, G.A. A comparative life cycle assessment of the sugarcane value chain in the province of Tucumán (Argentina) considering different technology levels. Int J Life Cycle Assess 22, 502–515 (2017). https://doi.org/10.1007/s11367-016-1047-3

Download citation

Keywords

  • Bioethanol
  • Biofuels
  • Biorefinery
  • Environmental profile
  • Sugar
  • Sustainability