Carbon footprint of pomegranate (Punica granatum) cultivation in a hyper-arid region in coastal Peru

Abstract

Purpose

The cultivation of pomegranate worldwide has increased sharply in the past few years, mainly due to the growing perception that this fruit has numerous medical benefits. Despite the proliferation of studies delving into the properties of pomegranate from a medical and dietary perspective, its analysis from an environmental perspective has yet to be carried out in depth. Hence, the present study aims at understanding the life cycle environmental impacts in terms of greenhouse gas (GHG) emissions derived from the cultivation, processing and distribution abroad of fresh pomegranate grown at an innovative farm in a hyper-arid area in the region of Ica (Peru).

Methods

The international standards for life cycle methodologies were considered in order to obtain the overall carbon footprint (CFP) of fresh pomegranate cultivation, processing and distribution. Data acquisition was performed at the cultivation site and supported by the ecoinvent® database, whereas GHG emissions were modelled using the IPCC 2007 method. In addition, biogenic carbon sequestration was included in the assessment, using two distinct models, a first one to model the aerial carbon sequestered by the pomegranate trees and a second, using the IPCC Soil Carbon Tool for soil storage.

Results and discussion

Annual results show that on-site GHG emissions can be mitigated to a great extent in the first years of production thanks to biogenic carbon sequestration. However, through time, this tendency is reverted, and in years of maximum pomegranate productivity, GHG emissions are estimated to outweigh those linked to sequestration, despite the relevant minimization of emissions when using innovative irrigation schemes as compared to the conventional flood irrigation in the region.

Conclusions

Despite the threat in terms of water depletion and security, the expansion of Peru’s agricultural frontier in hyper-arid areas appears to be a feasible strategy for carbon fixation, although current agricultural practices, such as the use of machinery or electricity, need to be optimized to make positive the carbon balance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. AgMRC (2012) Agricultural Marketing Resource Centre, Iowa State University. Retrieved from: http://www.agmrc.org/commodities_products/fruits/pomegranates-profile/. Accessed 5 June 2015

  2. Akhtar S, Ismail T, Fraternale D, Sestili P (2015) Pomegranate peel and peel extracts: chemistry and food features. Food Chem 174:417–425

    CAS  Article  Google Scholar 

  3. AMPEX (2006) Perfil de Mercado de la Granada Fresca (Granatum L. de Punica) Asociación Macroregional de Productores para la Exportación. Noviembre 2006. Retrieved from: http://www.naturaseeds.net/pdf/perfil.pdf. Accessed 5 June 2015 [in Spanish]

  4. Artés F, Villaescusa R, Tudela JA (2000) Modified atmosphere packaging of pomegranate. J Food Sci 65(7):1112–1116

    Article  Google Scholar 

  5. Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168:1147–1160

    Article  Google Scholar 

  6. Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci U S A 107(38):16738–16742

    CAS  Article  Google Scholar 

  7. Avadí A (2014) Sustainability of the Peruvian anchoveta supply chains from sea to shelf: towards a new strategy for optimal use of resources. PhD Dissertation. University of Montpellier

  8. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci U S A 104(16):6550–6555

    CAS  Article  Google Scholar 

  9. Baumann H, Tillman A-M (2004) The hitch hikers guide to LCA. Studentlitteratur, Lund

    Google Scholar 

  10. Bentín JP (2015) Valle y Pampa Agroinversiones, personal communication, March–September 2015

  11. Birdsey R (1992) Carbon storage and accumulation in United States forest ecosystems. General Technical Report W0-59. United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, Radnor, PA, August 1992. Retrieved from: http://www.ilea.org/birdsey/fcarbon_index.html

  12. BSI (2011) PAS 2050–1:2011. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution. ISBN: 978-0-580-71382-8

  13. BSI (2012) PAS 2050–1:2011. Assessment of life cycle greenhouse gas emissions from horticultural products. Supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050. British Standards Institution. ISBN: 978-0-580-75725-9

  14. Ceddia MG, Sedlacek S, Bardsley NO, Gomez-y-Paloma S (2013) Sustainable agricultural intensification or Jevons paradox? The role of public governance in tropical South America. Glob Environ Chang 23(5):1052–1063

    Article  Google Scholar 

  15. Cederberg C, Persson UM, Neovius K, Molander S, Clift R (2011) Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ Sci Technol 45(5):1773–1779

    CAS  Article  Google Scholar 

  16. Cerutti AK, Calvo A, Bruun S (2014) Comparison of the environmental performance of light mechanization and animal traction using a modular LCA approach. J Clean Prod 64:396–403

    Article  Google Scholar 

  17. Chaudhari SM, Patel KY, Badole SL (2014) Chapter 106—Punica granatum (Pomegranate Fruit): In: Cancer treatment. Polyphenols in human health and disease. Volume 2: polyphenols in the Prevention and Treatment of Vascular and Cardiac Disease, and Cancer, pp 1393–1400

  18. Clark A, Saucier JR, McNab WH (1986) Total-tree weight, stem weight and volume tables for hardwood species in the Southeast. Research Division, Georgia Forestry Commission

  19. Cooperativas Agroalimentarias (2011) Manual de ahorro y eficiencia energética del sector. Centrales Hortofrutícolas. Retrieved from: http://agro-alimentarias.coop/inicio. Accessed 15 Sept 2015 (in Spanish)

  20. DeWald S, Josiah S, Erdkamp B (2005) Heating with wood: producing, harvesting and processing firewood. Institute of Agriculture and Natural Resources, University of Nebraska

  21. Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D (eds) (2015) Managing water and fertilizer for sustainable agricultural intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). First edition, Paris, France. Copyright 2015 IFA, IWMI, IPNI and IPI. All rights reserved. ISBN 979-10-92366-02-0

  22. Edwards-Jones G, Milà i Canals L, Hounsome N, Truninger M, Koerber G, Hounsome B, Cross P, York EH, Hospido A, Plassmann K, Harris IM, Edwards RT, Day GAS, Tomos AD, Cowell SJ, Jones DL (2008) Testing the assertion that ‘local food is best’: the challenges of an evidence-based approach. Trends Food Sci Technol 19(5):265–274

    CAS  Article  Google Scholar 

  23. Faria A, Calhau C (2010) Pomegranate in human health: an overview (Chapter 36). Bioactive foods in promoting health: fruits and vegetables. Academia Press

  24. Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14(2):91–94

    Article  Google Scholar 

  25. Ghorbani M, Dabbagh GR, Yousefi S, Khademi S, Taki M (2015) The effect of application of different kinds of covers on the sunburn and internal qualities of pomegranate in Iran. In Biological Forum (Vol. 7, No. 1, p. 64). Research Trend

  26. Giampietro M, Mayumi K (2009) The biofuel delusion: the fallacy of large scale agro-biofuels production. Routledge

  27. Golubiewski N (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl 16:555–571

    Article  Google Scholar 

  28. Goula AM, Lazarides HN (2015) Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: the cases of olive mill and pomegranate wastes. J Food Eng 167-Part A:45–50

  29. Hagelaar GJ, Van der Vorst JG (2002) Environmental supply chain management: using life cycle assessment to structure supply chains. Int Food Agribusiness Manag Rev 4(4):399–412

    Article  Google Scholar 

  30. Hauschild MZ, Goedkoop M, Guinée J et al (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    CAS  Article  Google Scholar 

  31. Hertel TW, Golub AA, Jones AD, O’Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60:223–231

    Article  Google Scholar 

  32. INEI (2014) Compendio estadístico Perú 2014. Agrario. Retrieved from: http://www.unfpa.org.pe/InfoEstadistica/2014/Compendio/cap12/CAP12.PDF, Accessed 6th June 2015 [in Spanish]

  33. IPCC (2007) Climate Change 2007: Impacts, adaptation and vulnerability. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. pp. 976 Cambridge University Press: Cambridge, UK

  34. IPCC (2015) IPCC Soil Carbon Tool. Task Force on National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change. Retrieved from: http://www.ipcc-nggip.iges.or.jp/. Accessed Aug 2015

  35. IPD (2015) Practical market insights for your product: fresh pomegranates in Germany. Import promotion Desk, Germany. Retrieved from: http://www.siicex.gob.pe/siicex/documentosportal/alertas/documento/doc/874883914radD0C23.pdf. Accessed 5th June 2015]

  36. ISO (2013) ISO/TS 14067. Technical Specification. Greenhouse gases—carbon footprint of products—requirements and guidelines for quantification and communication. International Standards Organization

  37. Johnson JM, Franzleubbers AJ, Weyers SL, Reicosky DC (2007) Agriculture opportunities to mitigate greenhouse gas emissions. Environ Pollut 150:107–124

    CAS  Article  Google Scholar 

  38. Jurenka J (2008) Therapeutic application of pomegranate (Punica granatum L.): a review. Altern Med Rev 13(2):128–144

    Google Scholar 

  39. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44(5):1150–1160

    CAS  Article  Google Scholar 

  40. Lansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109(2):177–206

    CAS  Article  Google Scholar 

  41. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci U S A 107:3388–3393

    CAS  Article  Google Scholar 

  42. López-Rubira V, Conesa A, Allende A, Artés F (2005) Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biol Tecnol 37:174–185

    Article  Google Scholar 

  43. Marble SC, Prior SA, Runion GB, Torbert HA, Gilliam CH, Fain GB (2011) The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture. HortSci 46:240–244

    CAS  Google Scholar 

  44. Marquina S, Donoso L, Pérez T, Gil J, Sanhueza E (2013) Losses of NO and N2O emissions from Venezuelan and other worldwide tropical N‐fertilized soils. J Geophys Res Biogeosci 118(3):1094–1104

    CAS  Article  Google Scholar 

  45. Melgarejo P, Martínez-Valero R, Guillamón JM, Miró M, Amorós A (1997) Phenological stages of the pomegranate tree (Punica granatum L.). Ann Appl Biol 130:135–140

    Article  Google Scholar 

  46. Meyfroidt P, Rudel TK, Lambin EF (2010) Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci U S A 107:20917–20922

    CAS  Article  Google Scholar 

  47. Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15

    Article  Google Scholar 

  48. Ministerio de Agricultura (2011) Anuario: Insumos y Servicios Agropecuarios 2011. Dirección General de Seguimiento y Evaluación de Políticas. Ministerio de Agricultura y Riego. December 2012 (in Spanish)

  49. Ministerio de Agricultura (2012) Anuario: Insumos y Servicios Agropecuarios 2011. Dirección General de Seguimiento y Evaluación de Políticas. Ministerio de Agricultura y Riego. December 2013 [in Spanish]

  50. Ministerio de Agricultura (2013) Anuario: Insumos y Servicios Agropecuarios 2011. Dirección General de Seguimiento y Evaluación de Políticas. Ministerio de Agricultura y Riego. December 2014 (in Spanish)

  51. Muñoz JA (2000) Harvest, manipulation and commercialisation systems of pomegranate (Punica granatum L.). In: Melgarejo P (ed) Martínez-Nicolás J.J. (ed.), Martínez-Tomé J. (ed.). Production, processing and marketing of pomegranate in the Mediterranean region: advances in research and technology. Zaragoza : CIHEAM, 2000. p. 37–39 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 42)

  52. Myers N, Goreau TJ (1991) Tropical forests and the greenhouse effect: a management response. University of the West Indies, Discovery Bay, Jamaica. Retrieved from: http://www.ciesen.columbia.edu/docs/002-163/002-163.html

  53. Oré MT, Damonte G (2014) ¿Escasez de agua? Retos para la gestión de la cuenca del río Ica. Fondo Editorial de la Pontificia Universidad Católica del Perú. ISBN: 978-612-317-030-1 (in Spanish)

  54. PRé-Product Ecology Consultants (2015) SimaPro 8.04. PRè Consultants. The Netherlands

  55. Rahimi H, Arastoo M, Ostad S (2012) A comprehensive review of Punica granatum (Pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran J Pharm Res 11:385–400

    CAS  Google Scholar 

  56. Reijnders L, Huijbregts MAJ (2008) Palm oil and the emission of carbon-based greenhouse gases. J Clean Prod 16:477–482

    Article  Google Scholar 

  57. Saad H, Pizzi A, Charrier B, Ayed N, Rode K, Charrier F (2015) Valorization of Tunisian pomegranate peel tannins in green adhesives formulation. J Renew Materials 3(1):34–43

    Article  Google Scholar 

  58. Saunders C, Barber A, Taylor G (2006) Food miles-comparative energy/emissions performance of New Zealand’s agriculture industry. Lincoln University. Agribusiness and Economics Research Unit

  59. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238–1240

    CAS  Article  Google Scholar 

  60. SIICEX (2015) Partidas arancelarias del producto, exportadas en los últimos años. Sistema Integrado de Información de Comercio Exterior. Retrieved from: http://www.siicex.gob.pe/siicex/resources/fichaproducto/222pdf2014Sep22.pdf, Accessed 6th June 2015. [in Spanish]

  61. Smith A, Watkiss P, Tweddle G, McKinnon A, Browne M, Hunt A, Trevelen C, Nash C, Cross S (2005) The validity of food miles as an indicator of sustainable development—final report. REPORT ED50254

  62. Stemmler K, O’Doherty S, Buchmann B, Reimann S (2004) Emissions of the refrigerants HFC-134a, HCFC-22, and CFC-12 from road traffic: results from a tunnel study (Gubrist Tunnel, Switzerland). Environ Sci Technol 38:1998–2004

    CAS  Article  Google Scholar 

  63. UNFCCC (2006) Emissions summary for Brazil. Retrieved from: https://unfccc.int/files/ghg_data/ghg_data_unfccc/ghg_profiles/application/pdf/bra_ghg_profile.pdf. Accessed June 8th 2015

  64. Vázquez-Rowe I, Marvuglia A, Flammang K, Braun C, Leopold U, Benetto E (2014) The use of temporal dynamics for the automatic calculation of land use impacts in LCA using R programming environment. Int J Life Cycle Assess 19:500–516

    Article  Google Scholar 

  65. Vázquez-Rowe I, Kahhat R, Quispe I, Bentín M (2015a) Environmental profile of green asparagus production in a hyper-arid zone in coastal Peru. J Clean Prod112(Part 4):2505–2517

  66. Vázquez-Rowe I, Reyna J, García-Torres S, Kahhat R (2015b) Is climate change-centrism an optimal policy making strategy to set national electricity mixes? Appl Energy 159:108–116

    Article  Google Scholar 

  67. Villanueva-Rey P, Vázquez-Rowe I, Otero M, Moreira MT, Feijoo G (2015) Accounting for time-dependent changes in GHG emissions in the Ribeiro appellation (NW Spain): are land use changes an important driver? Environ Sci Pol 51:215–227

    Article  Google Scholar 

  68. Weber CL, Matthews HS (2007) Embodied environmental emissions in US international trade, 1997–2004. Environ Sci Technol 41(14):4875–4881

    CAS  Article  Google Scholar 

  69. Weidema BP, Bauer C, Hischier R, Nemecek T, Reinhard J, Vadenbo CO, Wernet G (2013) Citation: Weidema B P, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Vadenbo C O, Wer net G. (2013 ). Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1 (v3). Swiss Centre for Life Cycle Inventories, St. Gallen

  70. Weidema BP, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint. A catalyst for life cycle assessment? J Ind Ecol 12(1):3–6

    Article  Google Scholar 

  71. World Bank (2008) Peru-Water Resources Management Modernization Project. Project information document. Report no: AB3856. World Bank, Washington

    Google Scholar 

  72. Zhang P, Shao M (2014) Spatial variability and stocks of soil organic carbon in the Gobi Desert of Northwestern China. PLoS ONE 9(4):e93584

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Minela Chávarri and Juan Pablo Bentín for valuable scientific exchange, as well as SwissContact for valuable scientific support. In addition, the authors express their gratitude to the reviewers for their thoughtful and valuable comments. Authors with affiliation to the University of Santiago de Compostela (Spain) belong to the Galician Competitive Research Group GRC 2013-032. Dr. Ian Vázquez-Rowe wishes to thank the Galician Government for financial support (I2C Postdoctoral Student Grants Programme).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ian Vázquez-Rowe.

Additional information

Responsible editor: Alejandro Pablo Arena

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 850 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Rowe, I., Kahhat, R., Santillán-Saldívar, J. et al. Carbon footprint of pomegranate (Punica granatum) cultivation in a hyper-arid region in coastal Peru. Int J Life Cycle Assess 22, 601–617 (2017). https://doi.org/10.1007/s11367-016-1046-4

Download citation

Keywords

  • Carbon footprint
  • GHG emissions
  • Horticultural products
  • Land use changes
  • Life cycle assessment
  • Pomegranate