Attributional and consequential LCA in the ILCD handbook

  • Tomas Ekvall
  • Adisa Azapagic
  • Göran Finnveden
  • Tomas Rydberg
  • Bo P. Weidema
  • Alessandra Zamagni
COMMENTARY AND DISCUSSION ARTICLE

Abstract

Purpose

This discussion article aims to highlight two problematic aspects in the International Reference Life Cycle Data System (ILCD) Handbook: its guidance to the choice between attributional and consequential modeling and to the choice between average and marginal data as input to the life cycle inventory (LCI) analysis.

Methods

We analyze the ILCD guidance by comparing different statements in the handbook with each other and with previous research in this area.

Results and discussion

We find that the ILCD handbook is internally inconsistent when it comes to recommendations on how to choose between attributional and consequential modeling. We also find that the handbook is inconsistent with much of previous research in this matter, and also in the recommendations on how to choose between average and marginal data in the LCI.

Conclusions

Because of the inconsistencies in the ILCD handbook, we recommend that the handbook be revised.

Keywords

Attributional LCA Average data Consequential LCA ILCD handbook Life cycle inventory analysis Marginal data Review 

References

  1. Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P, Ekvall T, Finnveden G, Janssen M, Strid I (2015) Review of methodological choices in LCA of biorefinery systems—key issues and recommendations. Biofuels Bioprod Biorefin 9(5):606–619CrossRefGoogle Scholar
  2. Anex R, Lifset R (2014) Life cycle assessment: different models for different purposes. J Ind Ecol 18(3):321–323CrossRefGoogle Scholar
  3. Azapagic A, Clift R (1999) Allocation of environmental burdens in multiple-function systems. J Clean Prod 7(2):101–119CrossRefGoogle Scholar
  4. Brandão M, Clift R, Cowie A, Greenhalgh S (2014) The use of life cycle assessment in the support of robust (climate) policy making: comment on “using attributional life cycle assessment to estimate climate-change mitigation…”. J Ind Ecol 18(3):461–463CrossRefGoogle Scholar
  5. Curran MA, Mann M, Norris G (2005) The international workshop on electricity data for life cycle inventories. J Clean Prod 13(8):853–862CrossRefGoogle Scholar
  6. Dale BE, Kim S (2014) Can the predictions of consequential life cycle assessment be tested in the real world? Comment on “using attributional life cycle assessment to estimate climate-change mitigation…”. J Ind Ecol 18(3):466–467CrossRefGoogle Scholar
  7. Ekvall T (1999) System expansion and allocation in life cycle assessment—with implications for wastepaper management. PhD thesis. Dept. Technical Environmental Planning, Chalmers University of Technology, Gothenburg, SwedenGoogle Scholar
  8. Ekvall T, Weidema B (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171CrossRefGoogle Scholar
  9. Ekvall T, Tillman A-M, Molander S (2005) Normative ethics and methodology for life cycle assessment. J Clean Prod 13(13-14):1225–1234CrossRefGoogle Scholar
  10. European Commission (2013a) Building the single market for green products. Facilitating better information on the environmental performance of products and organisations. COM(2013) 196 final, Brussels, 9.4.2013Google Scholar
  11. European Commission (2013b) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. 2013/179/EUGoogle Scholar
  12. European Commission (2015a) EEB-01-2016: Highly efficient insulation materials with improved properties. In: Horizon 2020 Work Programme 2016–2017: 5.ii. Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing. European Commission Decision C (2015)6776 of 13 October 2015Google Scholar
  13. European Commission (2015b) NMBP-06-2017: Improved material durability in buildings and infrastructures, including offshore. In: Horizon 2020 Work Programme 2016–2017: 5.ii. Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing. European Commission Decision C (2015)6776 of 13 October 2015Google Scholar
  14. Finnveden G (2008) A world with CO2-caps. Electricity production in consequential assessments. Int J Life Cycle Assess 13(5):365–367CrossRefGoogle Scholar
  15. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21CrossRefGoogle Scholar
  16. Hertwich E (2014) Understanding the climate mitigation benefits of product systems: comment on “using attributional life cycle assessment to estimate climate-change mitigation…”. J Ind Ecol 18(3):464–465CrossRefGoogle Scholar
  17. JRC-IEA (2010) International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Detailed guidance. First edition March 2010. Publications Office of the European Union, Luxembourg. Available at http://lct.jrc.ec.europa.eu/
  18. Laurent A, Clavreul J, Bernstad A, Bakas I, Niero M, Gentil E, Christensen TH, Hauschild MZ (2014) Review of LCA studies of solid waste management systems—Part II: methodological guidance for a better practice. Waste Manag 34(3):589–606CrossRefGoogle Scholar
  19. Mathiesen BV, Münster M, Fruergard T (2009) Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessment. J Clean Prod 17(15):1331–1338CrossRefGoogle Scholar
  20. Plevin RJ, Delucchi MA, Creutzig F (2014a) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18(1):73–83CrossRefGoogle Scholar
  21. Plevin R, Delucchi M, Creutzig F (2014b) Response to comments on “using attributional life cycle assessment to estimate climate-change mitigation…”. J Ind Ecol 18(3):468–470CrossRefGoogle Scholar
  22. Plevin RJ, Delucchi MA, Creutzig F (2014c) Response to “On the uncanny capabilities of consequential LCA” by Sangwon Suh and Yi Yang. Int J Life Cycle Assess 19(8):1559–1560. doi:10.1007/s11367-014-0739-9 CrossRefGoogle Scholar
  23. Sonnemann G, Vigon B (2011) Global guidance principles for life cycle assessment databases. UNEP/SETAC Life Cycle Initiative, Paris/PensacolaGoogle Scholar
  24. Suh S, Yang Y (2014) On the uncanny capabilities of consequential LCA. Int J Life Cycle Assess 19(6):1179–1184CrossRefGoogle Scholar
  25. Weidema BP (2009) Avoiding or ignoring uncertainty. J Ind Ecol 13(3):354–356CrossRefGoogle Scholar
  26. Weidema BP, Frees N, Nielsen A-M (1999) Marginal production technologies for life cycle inventories. Int J Life Cycle Assess 4:448–456Google Scholar
  27. Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17(7):904–918CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tomas Ekvall
    • 1
  • Adisa Azapagic
    • 2
  • Göran Finnveden
    • 3
  • Tomas Rydberg
    • 1
  • Bo P. Weidema
    • 4
  • Alessandra Zamagni
    • 5
  1. 1.IVL Swedish Environmental Research InstituteGöteborgSweden
  2. 2.The University of ManchesterManchesterUK
  3. 3.KTH Royal Institute of TechnologyStockholmSweden
  4. 4.Aalborg UniversityAalborgDenmark
  5. 5.EcoinnovazionePonte San NicolòItaly

Personalised recommendations